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SUMMARY

A central problem in the field of robotics is to develop real-time planning and control al-
gorithms for autonomous systems to behave intelligently under uncertainty. While classical
optimal control provides a general theoretical framework, it relies on strong assumption of
full knowledge of the system dynamics and environments. Alternatively, modern reinforce-
ment learning (RL) offers a computational framework for controlling autonomous systems
with minimal prior knowledge and user intervention. However, typical RL approaches re-
quire many interactions with the physical systems, and suffer from slow convergence. Fur-
thermore, both optimal control and RL have the difficulty of scaling to high-dimensional
state and action spaces.

In order to address these challenges, we present probabilistic trajectory optimization
methods for solving optimal control problems for systems with unknown or partially known
dynamics. Our methods share two key characteristics: (1) we incorporate explicit uncer-
tainty into modeling, prediction and decision making using Gaussian processes; (2) our
algorithms bypass the curse of dimensionality via local approximation of the value func-
tion or linearization of the Hamilton-Jacobi-Bellman (HJB) equation. Compared to related
approaches, our methods offer superior combination of data efficiency and scalability. We
present experimental results and comparative analyses to demonstrate the strengths of the
proposed methods.

In addition, we develop fast Bayesian approximate inference methods which enable
probabilistic trajectory optimizer to perform real-time receding horizon control. It can be
used to train deep neural network controllers that map raw observations to actions directly.
We show that our approach can be used to perform high-speed off-road autonomous driving

with low-cost sensors, and without on-the-fly planning and optimization.

XVil
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Artificial intelligence (AI) empowers machines to behave intelligently. Researchers across
the globe have been working on Al since 1950s [1]. In over half a century after its ‘birth’
as an academic field, there were ups and downs in Al in terms of funding, public interest
and commercial success [1]. In the following, we motivate this thesis by discussing the

progress and challenges in Al and robotics in recent decades.

1.1.1 Progress in Artificial Intelligence

Over the last few decades, the fields of Al and robotics have witnessed remarkable progress
in the development autonomous systems that could achieve human-level performance in
specific tasks, thanks to the technological advancement of computer processing power and
data storage. For instance, IBM researchers have pioneered the development of game-
learning computer program “TD-Gammon’ [2], and the chess-playing supercomputer ‘Deep
Blue’ [3] in 1990s. While ‘TD-Gammon’ performed slightly worse than expert human
backgammon players, ‘Deep Blue’ achieved unprecedented superhuman performance, beat-
ing the world chess champion Garry Kasparov [3]. It was one of the first and biggest public
leaps forward in Al (see fig. 1.1). However, the impressive performance of ‘Deep Blue’
relies on brute force computation provided by a massively parallel computer system, and
rule-based reasoning programmed by Al researchers. Two decades later, the capabilities of
storing and processing massive amount of data, and the rise of Deep Learning have empow-
ered researchers to address more challenging problems. For example, Google researchers

presented the ‘Deep Q Network’ [4] to play Atari games and ‘AlphaGo’ [5] to play the
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Figure 1.1: Media coverage of Deep Blue (left) and AlphaGo (right) achieving super-
human performance in chess and the game of Go.

game of Go. Instead of using brute force computation and rule-based reasoning, the central
idea of these approaches is to create a large data set from previous experience using Re-
inforcement Learning (RL) [6], a machine learning paradigm for optimal decision-making
(see fig 1.3), and train a complex neural network using this data set in a supervised fashion.
These developments have pushed real-world applications of Al to a new level (see fig 1.1).
In these tasks, autonomous agents can achieve superhuman performance without explicit

rules imposed by human.

1.1.2  Challenges in Al-based Robot Control

Despite all the success, there are some distinct differences between applying Al to decision-
making in board (or video) games and control of real physical robots. First, in the afore-
mentioned applications, there is a ‘simulator of the world” and an autonomous agent is free

to explore this world in simulation. However, the real-world scenario is so uncertain, the
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Figure 1.2: Left: an autonomous helicopter successfully performs inverted flight. Right: a
humanoid robot fails to maintain balance while stepping out of a vehicle.

gap between the simulator and real world is significantly large, therefore it is very chal-
lenging to apply controllers learned from simulation to real-world settings. Second, robot
control tasks have continuous state and action spaces, in contrast to the discrete domain in
board or video games. Again the aforementioned approaches, e.g., [4, 5] cannot be directly
applied to control of physical robots. Third, in board games or robot planning tasks in a
‘grid world’, we assume that global information such as state and cost (or reward) is pro-
vided. However, this information will not be available for physical robotic systems without
using expensive sensors, and an explicit, user-designed performance criterion.

In the following we briefly discuss these challenges. The first one is the difficulty
of building a ‘simulator of the world’ for an autonomous agent to explore. In Markov
Decision Processes (MDPs), this amount to specifying the transition probability from one
state to another, assuming we have access to all states. However, the real dynamics of
physical systems and environment are usually highly uncertain. And physics-based models
can be very inaccurate. For example, helicopter aerodynamics (fig 1.2) is so complex and
not well-understood, there is no explicit model that could accurately predict the helicopter
dynamics [7] due to the difficulty of capturing important physical properties such as the
effect of inertia. One solution is combining physics-based knowledge with a data-driven

model [8, 9]. This hybrid approach has shown impressive results in dynamics modeling and
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difficult control tasks such as inverted flight. However, in this task, the training data was
using human pilot demonstrations, which implies that the task-related state-action spaces
of the system have been explored. In addition, when making multi-step predictions using
this model, the modeling error will be accumulated and such method does not provide a
solution to cope with the effect of modeling error.

The second issue is continuous state and action spaces. Based on the Bellman’s Dy-
namic Programming principle [10], optimal decision-making in continuous domains suffer
from curse of dimensionality: the number of states grows exponentially with the dimen-
sions of the state space. Therefore it is impossible to use brute force computation (such
as [3]) to explore the whole state space except for low-dimensional systems (i.e., inverted
pendulum). Similarly, the action space is also large, the number of actions increases ex-
ponentially with the dimension of the action space. So even learning-based methods such
as Q-learning [6, 4] cannot be applied here since they require exploring the whole action
space. For example, controlling a humanoid robot (fig 1.2) is extremely difficulty not only
because the system is too complex to model, but also because of its high dimensional state
and action spaces.

The third challenge is the lacks of information about the state and cost. Decision-
making in without fully observable states is usually addressed in partially observable Markov
decision process (POMDP) [11] which is a generalization of MDP. However, solving PODMP
is know to be computationally intractable. Even approximate solutions does not scale to
high-dimensional problems [12]. Regarding the cost or reward function, there are many
control tasks that are too complex to be specified explicitly. For instance, driving a car
like a human driver is a difficult control problem without a explicit performance criterion,
therefore it is not a well-defined RL problem. This challenge leads us to explore alternative

solutions outside the typical RL paradigm.
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Control

Agent Environment

State or observation
Cost

Figure 1.3: In reinforcement learning, an autonomous agent interacts with the environment
by applying a control. As a consequence, the agent receives a cost (or reward) and a new
state or observation. The goal is to find a sequence of control to minimize the accumulated
future cost.

1.2 Objective and Scope of this Thesis

In this section, we introduce the research topics that will be covered in the thesis as well as

the structure of this thesis.

1.2.1 Reinforcement Learning and Optimal Control

A main theme of this thesis is solving control problems with minimal knowledge of the
system and environment. This can be viewed as a reinforcement learning (RL) problem
[6]. RL is one of the three major paradigms in machine learning, besides supervised and
unsupervised learning. The high-level idea is learning to perform optimally by interacting
with the world. It has little assumption about the system and environment. More precisely,
at each time step, an autonomous agent with no prior knowledge about the world interacts
with the surroundings by applying controls. The agent receives a cost and a new state or
observation as a result of this interaction. The algorithm seeks the actions to minimize

the accumulated future cost. See fig 1.3 for a block diagram of RL. Besides engineering,
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RL has also been applied to solve decision-making problems in other disciplines such as
finance and recource management [13]. On the other hand, optimal control concerns the
problem of choosing a sequence of actions to minimize a cost function, subject to a known
dynamics constraint. Therefore the key difference between RL and optimal control is the
knowledge of a dynamics model. Both RL and optimal control are rooted in Bellman’s
work on Dynamic Programming [10] which is the ‘Principle of Optimality’ for decision-

making.

1.2.2 Probabilistic Modeling and Inference

One of the key problems in machine learning is to build models to represent uncertainties
that capture statistical dependencies between random variables. A probabilistic model is
such a model that describes data that one could observe from a real system, and the uncer-
tainty of the model is expressed using probability theory. Probabilistic inference amounts to
predicting the probability distribution over a random variable using a probabilistic model.
A complete review of probabilistic modeling and inference is outside the scope of this the-
sis. We refer the interested reader to [14] for a comprehensive study. Instead we focus on a
class of approaches called Gaussian processes (GPs) [15]. In contrast to building paramet-
ric models and fitting parameters to data, in GPs we specify a prior probability distribution
over a function directly. GP models can be applied to nonlinear regression problems, with
the goal of predicting the probability distribution over a function value given a training data
set. Motivated by the difficulty of modeling complex dynamics, in this thesis we will use

GPs to represent dynamics model in a probabilistic fashion.

1.2.3 Imitation Learning and Deep Learning

As mentioned in section 1.1.2, there are many control tasks that are too complex to define
explicitly. ‘Driving a car like a human driver’ is one example. In this case, however, we may

take advantage of expert demonstrations and reformulate the control problem as a problem
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of imitation learning. The field of imitation learning focuses on developing algorithms
with goal of improving performance by mimicking a expert’s decisions and behaviors. A
key advantage of imitation learning over reinforcement learning is that the complexity of
the control task is implicitly incorporated in the expert’s demonstration and there is no
need to specify the criterion of the control task manually. In fact, imitation learning can
significantly simplify the standard robot control pipeline in which the task is decomposed
into several different modules such as perception, motion planning and control, see [16]
for an example of a robot control pipeline. In contrast, we may learn a mapping from
sensory signals to control actions directly given demonstrations. Now the difficulty of
RL has been transformed to the difficulty of supervised learning, i.e., learning a complex
representation of the control policy given input-output training data where the input data is
high-dimensional (e.g., images).

To address this challenge we take advantage of recent breakthroughs in deep learning
[17]. More specifically, the idea of deep learning is to create a multi-layer architecture
of nonlinear functions, the ouput in each layer is the input to the successive layer. In our
case, the control policy can be represented by a convolutional neural network (CNN) with
multiple layers [18]. The CNN usually has millions of parameters which can be trained in
a supervised fashion using the data set collected from demonstration. CNNs have shown
unprecedented success in tasks such image recognition [18], speech recognition [17], and

aforementioned tasks such as playing video games [4] and the game of Go [5].

1.2.4  Applications to High-Speed Autonomous Driving

High-speed autonomous off-road driving is a challenging robotics problem [19, 20, 21].
To succeed in this task, a robot is required to perform both precise steering and throttle
maneuvers in a physically-complex, uncertain environment by executing a series of high-
frequency decisions. Compared with most previously studied autonomous driving tasks,

the robot must reason about unstructured, stochastic natural environments and operate at
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high speed. Consequently, designing a control policy by following the traditional model-
plan-then-act approach [19, 22] becomes challenging, as it is difficult to adequately charac-
terize the robot’s interaction with the environment a priori. Recent model predictive control
(MPC) approach [20] relies on expensive and accurate Global Positioning System (GPS)
and Inertial Measurement Unit (IMU) for state estimation and demands high-frequency on-
line replanning for generating control commands. We aim to relax these requirements by
designing a reflexive driving policy that uses only low-cost, on-board sensors (e.g. camera,
wheel speed sensors) using imitation learning and deep learning (as mentioned in section

1.2.3).

1.2.5 Contributions and Outline

The main contribution of this thesis is the computational framework of probabilistic trajec-
tory optimization with applications to reinforcement learning and imitation learning. The

rest of the chapters are organized as follow:

e Chapter 2: Technical Background and Related Work. In this chapter, we provide
important technical background that is necessary to understand this thesis. We will
cover problem formulation of optimal control and the dynamic programming princi-
ple. Motivated by the curse of dimensionality in dynamic programming, two families
of approximation techniques will be discussed. In addition, we briefly review Gaus-
sian process regression, a Bayesian nonparametric technique for supervised learning,
which is central to incorporating uncertainty into dynamics modeling for planning

and control in this thesis.

e Chapter 3: Probabilistic Differential Dynamic Programming. This chapter de-
scribes a model-based reinforcement learning approach that combines probabilistic
inference using Gaussian processes and trajectory optimization using Differential
Dynamic Programming (DDP). The resulting method, Probabilistic Differential Dy-

namic-Programming (PDDP), features the benefits from both fields. Experimental

8
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results and comparative study show that PDDP performs well in terms of computa-

tional and data efficiency.

Chapter 4: Path Integral Control under Uncertainty. In this chapter we present
two data-driven optimal control framework that are derived using the path integral
(PI) control approach. We find iterative control laws analytically without a priori
policy parameterization based on probabilistic representation of the learned dynam-
ics model. The two proposed algorithms operates in gradient-based and sampling-
based fashions, respectively. We present results showing that incorporating model
uncertainty into the path integral framework is important to achieving robust perfor-

mance.

Chapter 5: Prediction under Uncertainty using Sparse Spectrum Gaussian Pro-
cesses. This chapter introduces two analytic moment-based approaches with closed-
form expressions for Sparse Spectrum Gaussian Processes (SSGPs) regression with
uncertain inputs. Our methods are more general and scalable than their standard
GP counterparts, and are naturally applicable to multi-step prediction or uncertainty
propagation. We show that efficient algorithms for Bayesian filtering and stochastic
model predictive control can use these methods, and we evaluate our algorithms with

comparative analyses and both real-world and simulated experiments.

Chapter 6: High-speed Off-road Autonomous Driving via Deep Imitation Learn-
ing. In this chapter we present an end-to-end imitation learning system for agile,
off-road autonomous driving using only low-cost on-board sensors. By imitating an
optimal controller, we train a deep neural network control policy to map raw, high-
dimensional observations to continuous steering and throttle commands. Compared
with recent approaches to similar tasks, our method requires neither state estima-
tion nor online planning to navigate the vehicle. Real-world experimental results

demonstrate successful autonomous off-road driving, matching the state-of-the-art
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performance.

e Chapter 7: Conclusions and Future Work. This chapter concludes this thesis by

summarizing the contributions and outlining possible research directions for future

work.

10
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CHAPTER 2
TECHNICAL BACKGROUND

In this chapter, we provide a brief introduction to the important technical background which
is the foundation of this work. In section 2.1, we describe the optimal control and rein-
forcement learning (RL) problem formulation, the optimality principle, and two families of
techniques for solving optimal control problems. These techniques use different approx-
imation schemes to bypass the curse of dimensionality. In section 2.2, we briefly review
Bayesian linear regression which leads to the introduction of Gaussian process regression,

a key method used in this thesis for learning system dynamics.

2.1 Optimal Control and Reinforcement Learning

Optimal control is a general mathematical framework that deals with choosing actions to
optimize a performance criterion, subject to a dynamics constraint. Although derived from
different communities, the difference between optimal control and RL is subtle. It is usu-
ally assumed that knowledge of the system dynamics is given in optimal control, but in RL
the dynamics are unknown. Next we formulate the optimal control/RL problem mathemat-

ically.

2.1.1 Problem Formulation

We consider a continuous-time, nonlinear dynamical system described by the following

stochastic differential equation

dx = f(x,u)dt + Cdw, x(to9) = Xo, (2.1

11
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where x € R" is the state, u € R™ is the control and w € RP is standard Brownian
motion noise. f : R” x R™ — R" and C € R"*? are the transition dynamics function
and diffusion coefficient. We consider a finite-horizon control problem which is defined as

finding a control policy 7 that minimize

J(x(ty)) = E {h (X(T)) + / ' £<x(t), r(x(t), t))dt} , 2.2)

to
where h : R™ — R is the terminal cost function, £ : R™ x R™ — R is the instantaneous

cost rate. The control policy

is a function that maps states and time to actions. The cost J(x(ty)) is defined as the
expectation of the total cost accumulated from ¢, to 7. [E denotes the expectation operator.
Here we may assume that the states are fully observable. Next we review a fundamental

framework for solving this optimal control problem.

2.1.2 Dynamic Programming

Dynamic programming is a well-known framework for solving optimal control problems.
First we introduce the value function or cost-to-go which is the minimum of the accumu-

lated future cost

V(x(to)) = min (T (x(to))). (2.3)

The concept of value function is central to the Dynamic Programming framework, which
was derived from one of the two fundamental optimality principles for optimal control

(besides Pontryagin’s maximum principle) by Richard Bellman [23], it states:
Definition 1. /23] Bellman’s principle of optimality: An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must consti-

12
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tute an optimal policy with regard to the state resulting from the first decision.

The other optimality principle for optimal control is Pontryagin’s maximum principle
[24]. It provides a necessary but not a sufficient condition for optimality in deterministic
systems, and it deals with a single trajectory instead of value function or policy over the
whole state space. However, it is outside the scope of this thesis so we skip the discussion

on it. For the rest of our analysis, we discretize the time using the Euler scheme as £ =

1,2, ..., H with time step At = 7;_? In order to simplify notation, we use subscripts to
denote time steps for time-varying variables, e.g., X, = x(t;). The discretized system

dynamics can be written as
Xkt+1 = Xk + AXk + C Vv At&k (24)

where Axy, = At f(xx, uy) and & is i.i.d V' (0, I). We also define f(x, u) = At f(xx, ug)
for simplicity.

According to dynamic programming, the optimal control problem can be solved by
decomposing it into a sequence of single decisions. Mathematically, it is defined by the
Bellman equation

V(xg, k) = min (E(Xk, u) + E [V(Xk + Axy, k + 1)}) ) (2.5)

Ug

Obviously, in order to solve this equation, we need work backward in time. However,
solving this equation suffers form the curse of dimensionality. More specifically, when
the dimension of state and action spaces is high, the total number of states and actions is
enormous after discretization. In this case, solving the Bellman equation becomes compu-
tationally intractable. Next we describe two families of techniques to approximate dynamic

programming that can bypass this issue.
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2.1.3 Trajectory Optimization via Local Approximations

Solving general nonlinear optimal control problems via dynamic programming is difficult.

But it is known that if the dynamics model is linear and cost function is quadratic, i.e.,
Xpr1 = Axg + Buy,  L(xp,w) = x; Qx, + uy Ruy, (2.6)

Then the problem can be solved exactly. For simplification of analysis, we ignore the
noise term in this section. Note that the noise term will not affect the resulting control
policy or value function as long as the coeffiicent C in (4.20) is independent of state and
control. The above problem (2.6) can be solved via the Linear-Quadratic-Regulator (LQR)
for deterministic systems or Linear-Quadratic-Gaussian controller (LQG) for stochastic
systems [25].

For nonlinear systems, we can approximate the problem around the neighborhood of
a trajectory as a linear dynamics, quadratic cost problem. And use a LQR-like scheme
to solve it. Now we review a family of approaches for solving nonlinear optimal control
problems based on this idea. First we define the nominal trajectory of state and control
X, Uy and variations of state 0x;, = X, — X, and control du;, = u, — uy. Next we create
a local model of the dynamics along the nominal trajectory using the 1st order Taylor

expansion

bxpny = (14 A ) 5 OG0 ) o 2.7
ox ou

similarly, the cost function is approximated along the nominal trajectory as a quadratic

function via 2nd order Taylor expansion

14
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8L’(xk, le) aﬁ(xk, uk)

L(xp, ) =L(Xg, Ug) + ( o )Tox; + ( o )T ou,+ (2.8)
T
| o || e ot | [
dug || 2 2 || g,

Therefore the problem is reduced to a linear-quadratic problem locally along the nominal

trajectory. The approximate optimal control law can be obtained as a linear function

(511]: = W*(Xk) = Ik + Lk(;Xk (29)

where the forms of open-loop and feedback terms Ij,Lj; will be discussed in the next
chapter. Plugging the optimal control policy back into the Bellman equation (2.5) leads
to a quadratic approximation of the value function, which can be back-propagated through
time. Updating the optimal control u; = u+du;, and apply it to the nonlinear dynamics to
generate a new state trajectory forward in time. This becomes the new nominal trajectory
and a local model can be created. Therefore the nonlinear control problem can be solved
via iterative backward-forward sweeps until convergence.

The first algorithm in this family, Differential Dynamic Programming (DDP), was de-
veloped in 1970s [26]. Note that DDP uses second-order approximation of the dynamics
instead of linear approximation discussed here. Variations of DDP have been proposed
within the control, robotics and machine learning communities. These variations include
generalizations to stochastic systems [27, 28], extensions to model predictive control [29],
and min-max and cooperative game theoretic formulations [30, 31]. We will cover more

technical details of this class of algorithms in the next chapter.
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2.1.4 Path Integral and Linearly Solvable Optimal Control

Another way to scalable solution to optimal control problems is via exponential transfor-
mation of the value function. In control theory, this technique was introduced in [32, 33]. In
the past decade it has been explored in terms of path integral interpretations and theoretical
generalizations [34, 35, 36, 37], discrete time formulations [38], and scalable reinforce-
ment learning/control algorithms [39, 40, 41, 42, 43, 44]. The resulting stochastic optimal
control frameworks are known as Path Integral (PI) control for continuous time, Kullback
Leibler (KL) control for discrete time, or more generally Linearly Solvable Optimal Con-
trol [38, 45]. This class of methods usually assume the dynamics model is affine in control

and control cost is quadratic, i.e.,
l
X1 = F(xx) + B(xx) (uk +Cv At£k>7 L(xp, ug) = I(xx) + §ukRuk> (2.10)

where F'(-) can [(-) can be arbitrary nonlinear functions. £ has been defined in (2.4). In
order to derive the solution, we need to introduce the Hamilton-Jacobi-Bellman (HJB)
equation, which is the continuous-time counterpart of the discrete-time Bellman equation
(2.5). Next we will use continuous time notation with subscript ¢ with size At instead of
discrete time step k. The HJB equation takes the following form (derivation is skipped)

[10]:

1 1
—9,V = min (zt + EutTRut +(F,+Bw)'V,V + 5 Ir (Btszjvmv>, (2.11)

where [, = I(x,),F; = F(x,),%. = CCT, B, = B(x,), V,V = &80 g v —
IV (x,t+At)

V(xb,t+At)—V (x¢)
82x :

A7 Given the fact the the control cost is

and @V = hmAt_Hg

quadratic, we can take derivative of the right-hand-side of the above equation with respect
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to u; and set it to zero, we obtain the optimal control
u =R'B/V,V. (2.12)
Plug the above control law back into the HIB equation yields
—OV =1, + (V. V)TF, + (V,V)'B.R'B/V,V + %Tr (B:X.B/ V., V). (2.13)

Solution to the above equation is the optimal value function. However, solving such non-
linear, second-order partial differential equation (PDE) is difficult. The idea of using ex-
ponential transformation of the value function can reduce this PDE to a linear one. More
precisely, if we set

Vi

v, = eXP(_X)

where A is a scaling parameter. The above PDE becomes

A A A2
=00 =1, — —(V,V)'F, — —(V,¥,)'B,R"'B; V, 7,
0, 0, 20?2
\ \ (2.14)
+— Tr((V,1,)"B,X.B/ V,¥,) — — Tr(V,,¥,B;B)),
20 20,

which is still a nonlinear PDE. However, the nonlinear terms cancel out under the constraint

AR~ = 3_ [34]. And the PDE is reduced to
1 L1 .
oV, = Xlt\llt — (V)" Fy — 3 Tr(V,..V,B;B,), (2.15)

which is linear in differential operators. This PDE can be solved via the Feynman-Kac

formula [46]
T

U, = /p(Tt|Xt) exp (— %(Z 1(x;)At)) Urdr, (2.16)

j=t
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where 7; is the state trajectory from time ¢ to 7. The corresponding control law can be

obtained as
Vs \Ilt

u, =R'B/V,V =R 'B] =

(2.17)

It is worth noting that the control can be computed in a sampling-based or gradient-based

fashion. More technical details will be covered in chapter 4.
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2.2 Supervised Learning using Gaussian Processes

In this section, we first briefly review supervised learning and Bayesian analysis of standard
linear regression model. Next we introduce Gaussian processes (GPs), a more powerful
class of models for nonlinear regression problems. GP regression will be used to learn

dynamics models for RL and model predictive control (MPC) in the rest of the thesis.

2.2.1 Supervised Learning and Bayesian Linear Regression

Supervised learning is one of the three major paradigms in machine learning (the other
two are unsupervised learning and reinforcement learning). The task is to learn a function
or predictor from a set of labeled data in order to predict unseen data. Classification and
regression are two major tasks in supervised learning. As mentioned in the first chapter,
one of the major challenges in robot control is to build a dynamics model in order to predict
future states, given the current state and action. If we have a set of data observed from the
real system, this task can be viewed as a regression problem in statistical learning, and the
analysis can be performed in the context of Bayesian inference. We start by reviewing the

standard linear model for regression

h(z) = x"w, (2.18)

where x is a n-dimensional input variable. And we collect a set of observation

D ={(xi,9i),i=1,..,N}, where y=h(x)+e, (2.19)

where y is a scalar target variable, ¢ is i.i.d. and normally distributed noise N (0, c2). The
goal of linear regression is to estimate the weight w from data, and it can be performed in

the context of Bayesian inference. This treatment is called the Bayesian linear regression
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[14]. The zero-mean Gaussian noise assumption leads to Gaussian likelihood
p(y|X, w) = N(XTw, o21), (2.20)

where X is the design matrix and y is target vector collected from the data set D. We can

assume a prior distribution over the weight as
p(w) = N(0,%,). (2.21)

The posterior distribution over the weight can be derived from the Bayes theorem as

p(y|X, w)p(w) _

2.22
p(y1X) (2:22)

p(w|X,y) =

The numerator of the above expression has the form of a Gaussian distribution over w

because both prior and likelihood are Gaussians. More precisely

p(wX,y) = N(A'Xy,0247"), (2.23)

where A = XX +02%,,. However, linear models have very limited expressiveness. In or-
der to derive a more complex and flexible model, instead of dealing with distributions over
weights, we can perform Bayesian inference in function spaces directly using Gaussian

processes.

2.2.2 Gaussian Processes for Regression

Gaussian process (GP) is used to define a distribution over functions. Formally it is defined

as

Definition 1. A Gaussian process is a collection of random variables, any finite subset of

which has a joint Gaussian distribution [47].
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GP can be viewed as a generalization of the Gaussian distribution to an infinite-dimensional
function space. Similar to a Gaussian distribution, a Gaussian process is completely speci-

fied by a mean function and a covariance function, i.e.,

£(3x) ~ GP (m(). k(x, x))

where

m(x) = E; [ f(x)}, k(x,x) = COV, [ F(x), f(x')}, (2.24)

where E; and COV; denote the expectation and covariance operators with respect to the
random function f. The covariance function k(x,x’) is also called a kernel. Without any
prior knowledge of the model, we may assume a prior mean function m(-) = 0 and a

Squared Exponential (SE) covariance function plus a noise covariance
2 1 Tya7—1
k(XZ‘,Xj) = O'f exp(—é(xi — Xj) W (Xi — Xj)), (225)

and COV(y;,y;) = k(xj,%x;) + 02d;; where d;; is a Kronecker delta which is one iff
i = j and zero otherwise. W = diag(| 2o ]). The hyperparameters 6 of the kernel
consist of the signal variance UJ% that controls the variations of the function values from its
mean, the noise variance Ug that determines the noise magnitude we have in the data, and
the characteristic length-scales for input space [, ..., [,, that describe the smoothness of the
function. The kernel function is interpreted as a similarity measure of random variables. In
contrast to parametric approaches such as linear regression that rely on assumed structures
and finite number of parameters, the GP approach puts a prior on function directly, therefore
it is nonparametric.

Given the same data set D = (X, y), the joint distribution of the observed output and

21

www.manaraa.com



[ std dev
—— posterior mean

| X sample

- = -prior mean

input, x

Figure 2.1: An one-dimensional example of GP inference. We use a prior mean function
m(x) = 0.63 and covariance function (2.25). Black asterisks are noisy samples drawn from
f(x). Orange solid line is the GP predictive mean, and shaded area represents standard
deviation for each input value x. Note that the prediction mainly depends on the prior
when the input is far away from observations.

the output corresponding to a given test input X* can be written as

. _ N(O, K(X,X)+ 02T k(X,x*) )7
fx) k(x",X)  k(x",x%)

where K is a matrix with entries K;; = k(x;,%;). The posterior distribution, or predic-

tive distribution, can be obtained by conditioning the joint distribution on the observed

state transitions. Assuming independent outputs (no correlation between each output di-

mension), the predictive distribution is p( f(x*)|x*, D, 0) = N (u, X) where the mean and

variance are specified as

p = k(x", X)(K(X, X) + 0.I) ' AX,
(2.26)

> = k(x*,x*) — k(x*, X)(K(X, X) + 0.I) 'k(X, x*).

A toy example of GP regression is shown in fig (2.1).
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Prediction under Uncertain Input

Our goal is to use GP to model the system dynamics for trajectory optimization, therefore
it is necessary to make multistep predictions using the learned GP dynamics model. In
this case, we need to perform GP regression iteratively when the test input is a probability
distribution. The uncertainty of the input comes from the prediction in the previous step.

Given a input distribution x* ~ N(p*, %), the predictive distribution is

p(f(x")) = / p(f (")) p(x")dxc" @.27)

Generally, this predictive distribution cannot be computed analytically and the nonlinear
mapping of an input Gaussian distribution leads to a non-Gaussian predictive distribution.
However, the predictive distribution can be approximated by a Gaussian via moment match-
ing, i.e., computing the exact posterior mean and variance [48, 49, 50] . This approach will

be covered in the next chapter.
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CHAPTER 3
PROBABILISTIC DIFFERENTIAL DYNAMIC PROGRAMMING

Motivated by the challenges of improving robustness to modeling error and solving opti-
mal control problems in continuous state and action spaces, in this chapter we introduce a

probabilistic trajectory optimization for model-based reinforcement learning.

3.1 Introduction

While model-free reinforcement learning (RL) methods have demonstrated promising re-
sults in learning control applications [51, 39, 52, 53], they typically require human expert
demonstrations and a relatively large number direct interactions with the physical system.
In contrast, model-based RL was developed to address the issue of sample inefficiency
by learning transition dynamics models explicitly from data, which can also help to pro-
vide better generalization [54, 55]. However, model-based methods suffer from two severe
issues: 1) classical value function approximation methods [56, 57] and modern global pol-
icy search methods [55] are computationally inefficient for moderate to high-dimensional
problems; and 2) model errors significantly degrade the performance. To address the afore-
mentioned issues, in this chapter we propose an RL framework that relies on Differential
Dynamic Programming (DDP) and Guassian Process (GP) regression.

Originally introduced in the 70’s [26], DDP solves nonlinear optimal control problems
via successive local approximations of dynamics and cost functions along nominal trajec-
tories. DDP iteratively generates locally optimal feedforward and feedback control policies
along with an optimal state trajectory. Compared with global optimal control approaches,
DDP shows superior computational efficiency and scalability to high-dimensional prob-
lems. In the last decade, variations of DDP have been proposed within the control, robotics

and machine learning communities. These variations include generalizations to stochastic
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systems [27, 28], extensions to model predictive control [29] , and min-max and coop-
erative game theoretic formulations [30, 31].However, DDP relies on explicit dynamics
models and It is sensitive to model errors. To address these issues, various data-driven
approaches have been developed, such as minimax DDP using Receptive Field Weighted
Regression (RFWR) [30], and DDP using expert-demonstrated trajectories [58]. One issue
with these approaches is that the learned models are deterministic and do not explicitly take
into account any model uncertainty. As a consequence, the aforementioned methods have
either limited model expressiveness due to the fixed model structure [58], or require a large
amount of data to learn a good transition model [30, 59]. In this work we perform modeling
and prediction using Gaussian Processes (GPs).

Gaussian Processes (GPs) are used to define distributions over continuous functions
and offer a powerful way to perform Bayesian nonparametric estimation of functions, e.g.,
unknown transition dynamics. Over the last decade, there has been an increasing interest
in developing control/RL algorithms using GPs. For instance, the works by Rasmussen
and Kuss is one of the first GP-based RL algorithm [60]; Nguyen-Tuong and Peters ex-
plored inverse dynamics learning and tracking control via local GPs and semiparametric
GPs [61, 62, 63]; Deisenroth et al. proposed model-based policy search using GPs [64][50];
Hemakumara et al. used GPs for unmanned aerial vehicle controls [65] and Chowdhary et
al. incorporated GPs for adaptive controls [66]. Dallaire et al. use GPs to learn the transi-
tion, observation and reward models in POMDPs[67]. These works have demonstrated the
remarkable applicability of GP-based methods in robotics and autonomous learning.

In this work we integrate GPs into trajectory optimization and propose a probabilistic
variant of DDP, called Probabilistic Differential Dynamic Programming (PDDP). The re-
sulting algorithm performs probabilistic trajectory optimization that combines the benefits

of DDP and GP inference. The major characteristics of PDDP are summarized as follows:
o [t features data efficiency that is comparable to the state-of-the-art method.

o Computationallysit is significantly faster than other GP-based policy search methods.
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e Convergence is guaranteed under certain conditions. Our theoretical analysis gener-

alizes previous work.

e Prior model knowledge and risk-sensitive criterion can be incorporated into our pro-

posed framework.

PDDP is related to a number of recently developed model-based RL approaches that
use GPs to represent dynamics models. In particular, the PILCO framework developed by
Deisenroth et al. [50] has achieved unprecedented performances in terms of data-efficiency.
PILCO requires an external optimizer (e.g.,CG or BFGS) for solving non-convex optimiza-
tion to obtain optimal policy parameters. In contrast, PDDP does not require a policy pa-
rameterization nor an extra optimizer'. Compared with other DDP-related approaches for
stochastic [27, 28], unknown [59, 68] or partially known dynamics [30], PDDP explicitly
takes into account model uncertainty and features the attractive characteristics of GP-based
methods, 1.e., data efficiency. In addition, we incorporate cost uncertainty into the opti-
mization criterion for risk-sensitive learning. We will further discuss the similarities and

differences between our method and the aforementioned methods in section 3.6.2.

3.2 Preliminaries

We consider a dynamical system described by the following differential equation

dx = f(x,u)dt + Cdw, x(ty) = xo, (3.1)

where x € R" is the state, u € R™ is the control and w € RP is standard Brownian motion
noise. f : R"xR™ — R" and C € R"*? are the transition dynamics function and diffusion

matrix. The finite-horizon control problem is defined as finding a sequence of state and a

'We use an off-the-shelf optimizer for kernel parameter optimization but not policy optimization.
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control policy 7 that minimize

J(x(to)) = Ex {h (X(T)) n / ' C(X(t), T(x(t), t))dt] , (32)

to

where h : R™ — R is the terminal cost function, £ : R™ x R™ — R is the instantaneous
cost rate. The control policy u(t) = m(x(t),t) is a function that maps states and time
to actions. The cost J(x(%o)) is defined as the expectation of the total cost accumulated
from ¢y to 7. [Ex denotes the expectation operator with respect to x. We assume that

the states are fully observable. For the rest of our analysis, we discretize the time using

the Euler scheme as k = 1,2,..., H with time step At = Z’_tf In order to simplify
notation, we use subscripts to denote time steps for time-varying variables, e.g., x; = x ().
The discretized system dynamics can be written as X1 = X, + AXg + C\/Kt&'k where
Axy = Atf(xg,ug) and & is i.i.d N(0,I). We also define f(xy,u;) = Atf(xg, ug)
for simplicity. Finding the globally optimal control policy is computationally intractable
except for linear or low-dimensional systems. In this work we seek locally optimal policy
which is an approximation of the globally optimal policy in the neighborhood of a nominal
trajectory.

Base on the definition of Gaussian process (GP) in section 2.2 of chapter 2, we define

the belief as follow

Definition 2. A belief v of a dynamical system is defined as the probability distribution of

the state x given a set of sampled control inputs and state observations.

In this work, we assume the state is observable, and that a belief can be represented by
a Gaussian distribution over the state of a dynamical system, i.e., p(x) = N (u,X). The
belief can be obtained via approximate inference in probabilistic models given data. In the

next section, we discuss predicting state distributions over a trajectory using GP inference.
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3.3 Trajectory Prediction via GP Inference

One of the major assumptions of deterministic model-based RL methods is that the optimal
policy obtained using the learned model is close to the nominal optimal policy which could
be obtained if the true model is available. Due to this assumption, the performance of
most deterministic model-based RL methods degrades when the learned model is far from
the actual dynamics. Probabilistic models on the other hand can explicitly incorporate
uncertainty when predicting the system behaviors and reduce the effect of model errors.
In our approach, we use a probabilistic model learning and approximate inference scheme
based on GPs. We have introduced GP in section 2.2 of chapter 2. Now we discuss how to
compute predictive distributions iteratively over a trajectory using GPs.

Assume that we are given the initial state x; and we have computed the predictive
distribution of state x;1, which is Gaussian distributed p(xj41) = N (py,, 1, Xp+1) where

the state mean and variance are

i1 = X+ g, s Y1 = X

When performing two-step prediction, the input state-control pair X, ; becomes uncertain.
Here we define the input distribution over state-control pair at k as p(Xx) = p(xg, ux) =

Ny, f]k) Thus the distribution over state transition becomes

p(E(%)) = / (£ () |5 p () A

Generally, this predictive distribution cannot be computed analytically and the nonlinear
mapping of an input Gaussian distribution leads to a non-Gaussian predictive distribution.
However, the predictive distribution can be approximated by a Gaussian via computing

the exact posterior mean and variance p(f(Xx)) = N (py,, Xy,) [48, 49]. Thus the state
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distribution at k + 1 is also a Gaussian N (g, 1, Xj41) [50]

M1 = My + My, s (33)

2k+1 = Ek + Efk + Efk,xk + Exk,fk,7

where Xy, , is the cross covariance between state and the corresponding state transition.

The computation of gy, , 3y, , 3, «, will be discussed in the next section.

3.3.1 Approximate Inference via Moment Matching

Given an input joint distribution N (1, > k), we employ the moment matching approach
[48, 49, 50] to compute the predictive distribution. This technique is also known as As-
sumed Density Filtering (ADF) that minimizes the Kullback—Leibler divergence between
the true posterior p(f(Xy,)| fix, ) and the Gaussian approximation p(f(%;)) ~ Ny, Zy,)

with respect to the natural parameters of the Gaussian p(f(x;)), i.e.,

min KL (p(£(%0)| s 1) || pE(1))

with natural parameters ( = (E;kl Ky, s %E;kl). Next we compute the moments fiy, , 3y, in
closed-form. Applying the law of iterated expectation, the predictive mean p, is evaluated

as

g, = B, [£00)| o, ] = B, [Be [£G00) %] | e, 4

_ / Ee [£(50) [ |V (f1y, Si) ds.

To make of analysis concise we omit the conditioning on the training pairs X, AX and
hyperparameters 8. The predictive distributions are explicitly conditioned on the input

arguments, i.e., deterministic X; or uncertain fiz, 2. Next we compute the predictive
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covariance matrix

VAR 5, [f1 (Xe) |, 2] . COVig [F1(X2), £ (X5) | g, i)

COVy g, [F0(%i), £1(Re) o, Zh] . VARg g, [, (%) | 2k, S

where the variance term on the diagonal for output dimension ¢ is obtained using the law

of total variance

VARG 5, (%) [ 5] = Ex, [VARe [£i(50)[%] | ir, 5 |

< Ve 12~ e
+ Exg, []Ef (£ (x5) | %] ’Mk, Ek} — W,
and the off-diagonal covariance term for output dimension ¢, j is given by the expression

COVy g, [fi(xk), £;(%k) | fr, ik] -

Ex, [Ef (£ (%) | Xk B [£ (X1 ) [ %] ‘ﬁka ik] — Bpi by,
The input-output cross-covariance is formulated as

Yz, = COVy g, [%p, £(X) ’l)’kv ik} (3.4)

3t x, = COVi g [xi, £(Xp) |, ik] can be easily obtained as a sub-matrix of the above
matrix. See [69, 50] for detailed derivations of the moment matching approach. This tech-
nique has been used to perform prediction under uncertain inputs in GP-based estimation
[70] and control [44] tasks.

Despite providing the analytic expressions of the moments, the moment matching ap-
proach does not provide an explicit error between our Gaussian approximation and the true

posterior distribution. An explicit error bound may be achieved by using numerical approx-
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imation methods. For instance, [71] uses numerical quadrature, and the error bound grows
exponentially with the predictive horizon. However, such methods are known to suffer
from the curse of dimensionality. Hence, the analytic moment based approach presented

above is more suitable for the trajectory optimization framework developed in this work.

3.3.2 Hyperparameter Optimization

The hyper-parameters 6 are learned by maximizing the log-marginal likelihood of the train-

ing outputs given the inputs

0" = argmax { log <p (AX|5(, 9)) } (3.5)
0

where

log (p (dX|5<, @)) _ %dXT (K(X, X) + a,%I) Tlax

H+1

1 -
- 5 log ’K(X,X) 4021

log 2.

This optimization problem is solved using off-the-shelf optimizers [47].

3.3.3 Incorporating Prior Model Knowledge

As a nonparametric approach, GP features flexible representation of the transition dynam-
ics. However, model-based RL methods rely on training data collected from trajectory
rollouts to make predictions. Therefore the learned models do not generalize very well to
unexplored regions of the state-action spaces. In this section, we consider the case when
a parametric structure of the dynamics model, or basis function is known, but the parame-
ters are unknown. Incorporating explicit prior for GP regression has been introduced and
discussed in [72, 47]. Over the last decade, studies show semiparametric models outper-
form purely parametric or nonparametric models for inverse and forward dynamics model

identification of robotic systems [62, 73, 74]. However, these related work considered a
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special case when the dynamics are linear functions of the model parameters. In this work
we consider a general case when the dynamics can be nonlinear in the parameters. First
we define the basis function ¢ (X, ®) therefore the dynamics model can be described in a

semiparametric form

Xpt1 = Xg + P(Xp, ©) + fe(Xx) (3.6)
—— ——
parametric nonparametric

where f.(x;) = f(X1) — ¢(Xx, ©) is the GP error (unmodeled) dynamics. This term repre-
sents the discrepancy between the parametric model and data sampled from the true model.
We have discussed GP model learning and inference in chapter 2 and section 3.3.1,3.3.2 in
this chapter. Given a basis function and training samples, we will learn the unknown model
parameters by minimizing the loss function [(©) = 1 Zjvzl (ij — P(xy, @))2 which is
the accumulated error between the parametric model prediction and corresponding training

data.

Parameter estimation via cross-entropy optimization

The Cross-Entropy (CE) approach [75] is generally used for estimating rare event prob-
abilities via importance sampling. The key idea is to treat the optimization problem as
a estimation of rare-event probabilities, which correspond to finding parameters ® that
happens to be close to the optimal parameters ®* = arg min /(®). In contrast to gradient-
based optimization methods, CE is a gradient-free method based on random sampling. The
CE method performs optimization with the following basic steps: random sampling — draw
K samples of ® from a Gaussian distribution. Loss evaluation — compute loss [(©;) for
each sample i. Sort — sort ©; by loss function values in ascending order. Update — Use
K; samples correspond to low loss (in the sorted list) to update mean and variance of the
distribution. Then go back to draw samples from this updated distribution. The algorithm
terminates when the variance of the distribution becomes very small. The returned solution

is the mean of final sampling distribution. The CE algorithm is summarized in algorithm 1.
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Algorithm 1 Cross-Entropy method for parameter learning

Initialization: Choose a multi-variate Gaussian distribution N (Oamp, Zsamp)
Sampling: Draw K samples of © from N (O gump, Xsamp)

Loss: Evaluate loss [(©;) for each sample 4

Sort: Sort ©; _x w.rt. [(©; k) in ascending order

Update: Re-compute mean and variance of the sampling distribution gy

ZiK:ll K%@i and Ygump = EKl L(@i - @samp) (@i - @samp)T

i=1 K,
Iterate: Return to step 2 until convergence

7: Return: Optimal estimate of parameter ®* = Oy,

AN

@

Approximate inference via linearization

In order to compute the predictive distribution over x;,; under uncertain input p(X;) =
(fur, i), we perform the first-order Taylor expansion of the expectation E[¢ (X, ©) %]

around a reference point. Here we consider the mean of state-action pair fu

Ex, [¢(Xk, ©)[xx] = Ex, [(f2x, O)| 2]

OEs, [(Xr, ©)|%x] |
+ —
@Xk

(i)

Xp=p

N

-~

D,

The predictive mean is obtained by evaluating the function at input mean f,. More pre-

cisely

B, ~ O(fir, ©). (3.7)

33

www.manaraa.com



Based on the linearized model, the predictive covariance is evaluated as

~ VAR, [®rXk |, 3] + 2
= Ex, (@15 — ®uft) (915 — Bufn)T| + 2, (3)

= P, Ey, [(fik — ) (Xp — ﬁk)T} @ +3,

= @kiz@{ + X,
where X, is a diagonal matrix with entries being the noise variances 02. The cross-
covariance between x;, and ¢ (X, ©) is computed as
Sson = COVy, [Xy, (X1, ©)| e, B
~ COVy, [Xk, i |, ik]
= Eg, [(ik — fu) (Prxy — ‘I’kﬁk)T] (3.9)
= By [ (& — ) — )| @]
= 3,®],
The cross-covariance Xy, 4, = COVg [xk, @kik’ﬂ,k? ik} is obtained as a sub-matrix.

The results in (3.7),(3.8) and (3.9) are used to perform long-term prediction, i.e.,

Py = B+ By, = By, + (i, ©),
V1 = g+ g, + D, T Vg (3.10)

=3+ B, + B8] 4 B3, + XD

Different from the exact moment matching used for GP inference, the approach presented
here is an approximation of the moments. In general, exact moments can not be computed
analytically because the basis function ¢(X;, ®) from a physical model is unlikely to have

the same form as in GP posterior mean or variance. The partially known parametric model
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is very useful when predicting in the region with sparse (or no) training samples. However,
the analysis above does not take into account the estimation error of the parametric model,

therefore it could still give problematic long-term predictions.

Semiparametric model

Now we combine the benefits of both parametric and nonparametric models. The semi-
parametric model uses the parametric part to generalize to regions in state-action space
that are far from the training data, where the nonparametric part is used to model the error
dynamics, i.e., difference between the true dynamics and parametric part. For instance the
posterior GP mean becomes

Ee £ (%) [%i] =0p(X, ©) + (%, X) (K (X, X)

(3.11)
+ o, D) (AX ~®(X, @)),

where AX — ®(X,0) = {AxS — ¢(X5,0), ..., Ax}, — P(X5%,O)} is a collection of
sampled state transition errors. It can be seen that if the query state-action pair Xj is
very far away from the training samples X, ie., X — x; — oo, © = 1,.., N, the ker-
nel k(x;,x;) = 0F exp(—3(xx — x§)"W(x; — x{)) — 0. In this case the nonparametric
part almost vanish and the parametric part dominates in making predictions. Therefore the
parametric model is essential in generalizing the model to regions in state-action space that
are not covered by the training samples. This feature enables accurate prediction under
insufficient exploration.
Given a Gaussian predictive distribution over the error dynamics p (fe(ik)) =N (y, Fur 2 fk) ,

and based on the approximate inference methods introduced in chapter 2 and sections

3.3.1,3.3.3 and 3.3.3 in this chapter, the semiparametric dynamics model can be written
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as

Mpp1 = My + g, + My,

Y1 =2+ 3, + 25 + 2, (3.12)

+ Zflmxk + Exkvfk + Z¢k,xk + Zxk7¢k'

where the terms py, , 3, in (3.12) denote predictive distribution over the transition error
dynamics. Note that (3.12) is a generalized version of (4.27). If ¢(-, -) outputs zeros, (3.12)
becomes (4.27). The above semiparametric formulation relies on partial knowledge of the
dynamics model, which is represented by explicit basis function of the state, actions and
unknown parameters. In practice this prior knowledge may be available for mechanical
systems. Studies in the last five years have shown that semiparametric models perform
substantially better than purely parametric and nonparametric models [62, 73, 74]. This
advantage is more significant in real world experiments than in simulations [62, 73]. This is
because the GP error dynamics model also absorbs the modeling error of basis functions in
real physical systems. In contrast, when performing experiments in simulations, the basis
functions are assumed to be good representations of the dynamics and used to generate
sample data. Overall, the proposed model learning and inference scheme takes into account
uncertainty of unknown or partially known dynamics which will be used for controller

design in the next section.

3.4 Probabilistic Trajectory Optimization

Now we introduce Probabilistic Differential Dynamic Programming (PDDP), a trajectory
optimizer that employs a combination of probabilistic inference and Differential Dynamic

Programming (DDP).
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3.4.1 Belief Dynamics and Local Approximation

In DDP-related algorithms, a local model along a nominal trajectory (Xy, uy), is created
based on: i) a first or second-order approximation of the dynamics model; ii) a second-
order approximation of the value function. In our proposed PDDP framework, we will
create a local model along a trajectory of state distribution-control pair (p(Xy), ug). In
order to incorporate uncertainty explicitly in the local model, we use the Gaussian belief
v = [p, vec(X;)]T over state x; where vec(Xy) is the vectorization of X;. Based on

eq.(4.27) or (3.12), the belief dynamics model can be written as

Vi1 = ]—"(vk,uk). (313)

Now we create a local model of the belief dynamics. Firstly we define the control and state
variations vy = v, — Vi and du = uy — U,. Next we perform Taylor expansion of the

belief dynamics around (v, uy)

SVii1 = Foovy + Fiow + O(||6ve|® + [|owe?), (3.14)

In this work we compute the first-order expansion in (3.14) but keep the higher order terms

O(-) for theoretical analysis. The Jacobian matrices 7} and JF}* are specified as

Fr=| o 2 Fr= | O | 3.15
k 82k+1 2k+1 k ) ( )

Oy iy Oy 8Zk+1 01 OMyyy  8Xpiq
8”l’k ’ BEk ’ dﬂk ’ sz > Oug Juy

The partial derivatives are computed analytically.
Their forms are omitted due to the space limit. For numerical implementation, the dimen-
sion of the belief can be reduced by eliminating the redundancy of X; and the principle

square root of 3; may be used for numerical robustness.
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3.4.2 Optimization Criterion

Since the state is a random variable, we need to compute the expected costs and we define

them as functions of the belief

E(Vk, uk) = Ex[ﬁ(xk, uk)], h(Vk) = ]Ex[h,<Xk)]
For instance, in many optimal control approaches, a quadratic cost function is used

L(xp,w) = (x5 — x°NTQ(x1, — xI°) + uf Ruy, (3.16)

where xJ°* is the target state. Given the distribution p(x;) = N (g, =), the expectation

of original quadratic cost function is formulated as the belief-control cost

L(vi, ;) = Ex [E(Xk, ukz)] = L(pg, up) + t1(2xQ) (3.17)

The cost expectation (3.17) scales linearly with the state covariance, therefore it penalize
both distance between the expected state and the target state, and the uncertainty of the

predictive state. In this work, we also consider a risk-sensitive cost function [76]

~ ll IEx £ ) I O
L(Vi,uy,€) = ¢ %8 [eXp<€ (i uk>)] €7 (3.18)

Ey [ﬁ(xk, uk)} , e=0

where ¢ is the risk sensitivity parameter. Taking the second-order Taylor expansion of the

above cost function about E[L(xy, uy)] yields [76]

Lvi g, €) = Ex[L0x )] + 5 VAR, 0] (3.19)
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where the variance of cost is obtained as

VARX [,C(Xk, llk)} = tI‘(2QEkQEk)
(3.20)

+ 4(py, — Xioal)TQEkQ(Mk — Xioal)~

Partial derivatives of the cost w.r.t. belief and control a%k/j(vk, ug) = {aiukﬁ(vk, ug), %kﬁ(vk, ug)}
and %Z(V}C, uy) can be computed analytically. Their expressions are omitted due to the
space limit. The cost function (3.19) captures not only the expected cost, but also the pre-
dictive uncertainty of the cost. It can be viewed a generalization of the cost expectation
used in RL and stochastic control. More precisely, when ¢ = 0 the cost becomes risk-
neutral, which is equal to the expected cost (3.17). € > 0 corresponds to risk-averse and
€ < 0 corresponds to risk-seeking criterion. In the risk-averse case, the trajectory opti-
mizer explicitly avoid regions with high uncertainty. In the risk-seeking case, trajectories
with higher-variance are preferred. When no prior knowledge of the dynamics model is
available, the risk-averse strategy is a good fit for the PDDP frameworks. Since it relies
on local approximations of the dynamics and data sampled along one or multiple trajec-
tories, the learned model is accurate only within the neighborhood of these trajectories.
The risk-averse policies avoids wide cost distribution explicitly, therefore extensive explo-
rations in highly uncertainty regions are avoided, and the regions close to the sampled data
are preferred. This criterion is especially beneficial for the case when very little samples
are available. For the rest of this chapter, the risk-sensitive learning corresponds to the
risk-averse case when € > (.

For a general non-quadratic cost function we approximate it as a quadratic function
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3.4.3 Control Policy and Value Function Approximation

According to the Dynamic Programming principle [26], the Bellman equation in discrete-

time is specified as follows

V (v, k) = min [',(vk, ug) + V(]:(vk, ug), k + 1), (3.22)
uy N 9
Q(vi,ug)

where V' (vy, k) is the value function for belief v at time step k. At the terminal time step
h

V(vu,H) = h(v(H)). Given the belief dynamics (3.14) and cost (3.21), our goal is to

obtain a quadratic approximation of the value function along a nominal belief trajectory by
1
V(vi, k) = V¢ + (V) 0w+ Sovi Vi ovi + O([love ). (3.23)
We can do so by expanding the ()-function defined in (3.22) along (b, Giz)

Qr(by, + 6vi, Ty + 0uy) = QY + (Q4) Tovy, + (QF) Tdu,+

T
Lo | [ @ o || o sve | |I? (329
] ol 1)
(Sllk Q}éb Qq]:u 5uk 6uk
where
Qp =Ly + (F)"Vi, Q=L+ (F) Vi, (3.25)

V=L (PO Q) = L+ (FTVRLF,

B = L (R TV R
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In order to find the optimal control policy, we compute the local variations in control 1

that minimize the quadratic approximation of the ()-function in (3.24)

ouy = arg Iglin Qr(by + ovi, uy, + (5uk)]
uy

(3.26)
= —(Q) ' (@) v

I Lg

The optimal control can be found as i, = 0y, + 0. The control policy is a linear function
of the belief vy, therefore the controller is deterministic. To ensure convergence we apply

line search by adding a parameter 0 < ¢ < 1 to the feedforward gain. More precisely
ﬁk = u; + EIk + Lk(st (327)

We start by setting ¢ = 1 and reduce it if the trajectory cost under the new control is
higher than the cost of the nominal trajectory. If the new cost is lower than the nominal
cost we accept the control G, and reset ¢ = 1. We will show the global convergence of
the optimal control and value function in section 3.5. Plugging the optimal control (3.27)
into the approximated Q-function (3.24) results in the following backward propagation of
parameters for value function (3.23)

1 u
Vko = /32 + Vk0+1 - (552 - 5)(Qk)TIk

VE=Qb+ QWL V¥ =QY+ QUL (3.28)

After the backward pass, we apply the policy (3.27) to generate a new control and belief
trajectory by propagating the belief dynamics 4.28 forward in time. The belief propagation
is performed using approximate inference methods, i.e., exact moment matching (3.3.1)

and linear approximation (3.3.3).
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3.4.4 Control constraint

Control constrains can be taken into account in different fashions, it has been shown that
using naive clamping and squashing functions performs unfavorably compared to directly
incorporating the constraints while minimizing the ()-function [77]. In this work we take
into account the control constraints by solving a quadratic programming (QP) problem

subject to a box constraint

min Qg (Vi + 0vi, uy + duy)
ouk (3.29)

sub. to Upin < Uy + 0wy < Wpay

where u,;; and u,,,, correspond to the lower and upper bounds of the controller. The QP
problem (3.29) can be solved efficiently due to the fact that at each time step the scale of
the QP problem is relatively small. And warm-start can be used to further speed up the
optimization in the backward pass. Solving (3.29) directly is not feasible since v is not
known in the backward sweep. The optimum consists of feedforward and feedback parts,
i.e., I+ Lydv, = arg mingy, [Qr(vVi+0vk, uy,+0uy)], here we adopt the strategy in [77]
using the Projected-Newton algorithm [78]. The feedforward gain is computed by solving

the QP problem

I, = argmin [5quZ“5uk + QZduk}
Ouk (3.30)
sub. to Umin S u; + (511k S Umax

Qrpr Qie
Qijer  @itee

correspond to clamped (when u; = Ui, OF Upax) Or free (Upin < Up < Upax) parts,

The algorithm gives the decomposition of @y« = [ } where the indices f,c

respectively. The feedback gain associated to the free part is obtained by Ly, = —Q);" fQ};”.
The rows of Lj, corresponding to clamped controls are set to be zero. An example of the

constrained and unconstrained controllers for the quadrotor tasks is shown in fig.(3.8).
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3.4.5 Summary of algorithm

The PDDP framework for RL can be summarized in Algorithm 2. From a high-level view,
the main loop of this algorithm consists of 3 basic components. 1) Model learning (Step
3): Learning a probabilistic GP dynamics model using data sampled from interactions with
physical systems. If prior knowledge (basis function) of the system dynamics is given,
model parameters may be learned as discussed in section 3.3.3; 2) Probabilistic trajectory
optimization (Step 5-7): this iterative scheme has 3 steps at each iteration. First (step 5),
we compute the linear approximation (3.14) of the belief dynamics(4.28) and quadratic ap-
proximation of the cost (3.21) along a nominal trajectory. Second (step 6), we compute a
local optimal control policy (3.27) by backward-propagation of the value function (3.28).
Control constraints can be incorporated in the backward propagation, see section 3.4.4. In
addition we employ a line search strategy to ensure convergence, see section 3.4.3 for de-
tails. Third (step 7), we update and apply the control to obtain a new belief trajectory using
approximate inference methods introduced in sections 3.3.1,3.3.3. This trajectory is used
as the nominal for the next iteration. Regarding the termination condition (Step 8), we con-
sider 3 stopping criteria: 1) maximum iteration number is reached, ii) policy improvement
is small enough, and iii) predictive variance exceeds a threshold. The optimization tech-
niques stop the iteration process when at least one of the corresponding termination criteria
is satisfied. 3) Interaction (Step 10), in order to collect new state and control samples we
apply the optimized trajectory and control policy to the physical systems and generate a tra-
jectory rollout. Additional trajectories can be generated using variations of the optimized

trajectory.

3.5 Theoretical Analysis

In this section, we provide theoretical analysis and show that PDDP is globally convergent.

The convergence property of the classical DDP has been discussed in [79] for scalar sys-
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Algorithm 2 : Probabilistic Differential Dynamic Programming for reinforcement learning

1: Imitialization: Apply random or pre-specified control inputs to the physical system
(4.20). Collect data.

2: repeat > Main reinforcement learning loop
3: Model learning: Learn GP hyper-parameters € by evidence maximization (3.5)
given sample data. Optimize dynamics model parameters if necessary (see section
3.3.3).
repeat > Probabilistic trajectory optimization loop
5: Local approximation: Obtain linear approximation of the belief dynamics

(3.14) and quadratic approximation of the cost (3.21) along a nominal trajectory
(Vk, ug). See section 3.4.1.

6: Backward sweep: Compute the approximation of the value function (3.28)
and obtain optimal policy for control correction 61, (3.26). See section 3.4.3.

7: Forward sweep: Update control u; and perform approximate inference to ob-
tain a new nominal trajectory (v, 0 ). See sections 3.3.1,3.3.3.

8: until Termination condition is satisfied

: return Optimal trajectory (v, 0y ) and control policy
10: Interaction: Apply the optimized control policy Ly, to the system (4.20) along the
optimized trajectory 1y and record data. Additional rollouts can be generated using
variations of the learned controller.
11: until Task learned
12: Return: Optimal trajectory and control policy

tems. However, the analysis is based on the a-priori assumption that the algorithm would
converge. [80] addresses the global convergence of DDP. But it only applies when the run-
ning cost L(-,-) = 0. Here we provide a more general proof that guarantees convergence.

First, we define the following vectors
AU = [pu],....6u; |7, U=[u],.. u; |7 e R™*H-D, (3.3D
In our analysis we make the following assumptions
Assumption 1. Q}" is positive definite for k = 1,.., H — 1.
Assumption 2. The initial state x; is known.

Remark 1. The condition in assumption I can be easily ensured by applying the Levenberg-
Marquardt-related trick as in [27]. The details are omitted due to page limitation. Assump-
tion 2 is common for most episodic RL methods.
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Lemma 1. For the total cost J defined in (3.2), belief dynamics defined in section 3.4.1

and optimization criterion defined in section 3.4.2, the following is true
Vo d = (Fi) s + L (3.32)

fork=1,..,H — 1, where g, = (F2) g1 + L2 and ny = hP.

Proof. Fork =1,..., H — 1 we have

T

Vo J = VukIEx[ L(x,,u,) + h(XH)]

T

= Va, [Hz__:l L(ve,u,) + E(VH)]

_ Gﬁ(vk, uk) i 6/:,(Vk+1, uk+1) NI 6£(VH,1, qul) 4 8B(VH)
ouy, ouy, ouy, ouy,

= Ez + ((EZH)T]:;:)T + (([’z—i-Q)T}_lg—i-lflg)T +oe

Il
B

+ ((521—1)sz—2 o 'FI?+1F£)T + ((ﬁb)T}_Z—l o '~7:12+1Fg)T

= L+ (FOT (Lo + (Fin) (Lhyo o+ BTGy Filp)) (3.33)
Mk +2

~"

Mk+1

As aresult, (3.32) is true. l
Next, we show that the control updates found in (3.27) is a descent direction.

Lemma 2. For the total cost J defined in (3.2) and control updates AU defined in (3.27,

3.31), the following is true

H-1
(VuJ)TAU = —e > N+ O(e?) (3.34)
k=1
where A\, = (Q¥)T(Q¥) QY.
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Proof. In order to show (3.34), it is sufficient to prove

H-1 H-1
(Va, D) 6, = =& Y~ A+ (VP = i) Tovi + O(?) (3.35)
=k T=Fk

for = 1,..., H — 1. It is straightforward to see that when £ = 1 we have 6v; = 0. And
the above expression is equivalent to (3.34). From now on, we focus on (3.35). First we
consider the case when 7 = H — 1. Applying the results from Lemma 1, the policy (3.27)

and expressions from (3.25) (3.28) we have

(Va o J) 00m 1 = (Fppo) T+ Lyy) (11 + Ly 16vi )
= (Q%_ )" (g1 + Ly 16vi_1)

= —e(Qy_ )" (QF 1) 'Qh + Q%) (Ly-16vE_1)

= —edg1+ ((Qf ) Lu1 + Q%) — (Q4_1)")0vE

= —eAg1+ ((V§—1)T - ((‘FIb{—l)Tﬁb + El}l—l)T)évH—l

(3.36)

= —8/\H71 -+ (V;)I—l — T]Hfl)T(SVHfl

Therefore (3.35) is true for 7 = H — 1. Now we assume that (3.35) is true for 7 = 7+ 1.

More precisely we have

H-1 H-1
Z (Vu, J)Tou, = —¢ Z A+ (Vi = mip1) T 0vie + O(?) (3.37)
T=1+1 T=1+1

Now we consider the case when 7 = i. Applying the results from Lemma 1, the policy

(3.27) and expressions from (3.25) (3.28) we have
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H-1 H-1

> (V. )Tou, = Y (Va, J) 0u, + (Vy,J) ou; + O(?)

T=1 T=1+1
H-1
== > A+ (VA = mip) 6V + (0 F 4 (£8)T)ows + O(?)
T=1+1
H-1
——c > A+ (Vi = mi) (Fovi + Fow + O(||ow]|?
T=1+1

+ 16v4]1*) + (0 F* + (L) T)éu; + O(e?)

H-1

]
— e > A (Vi = mi) TFO v+ (F) TV, + £1) w+ O(e?)
T=1+1
H-1
==& 30 A+ (Vi = i) TFOv + (@)
T=i+1

(- e@m)'Qr = (@)'Q"ov:) + O()
H-1

=2 > A —@UTQ) QN+ (@ — £ =+ £)Tov,

T=i+1

—(Q)N(Q") Qi dvi + O(€?)

H-1
——e Y - (@ - @@ RN — ) v+ OE)

T=1i+1

== A+ (V=) v+ O(e?), (3.38)

where we have used the fact that v, = O(e) and duy, = O(¢) (see [80]). Now we complete
the proof of (3.35) for £ = 7. By induction (3.35) is true for k = 1, ..., H — 1, hence (3.34)

18 true. O

Remark 2. Lemma 2 implies for sufficiently small € and non-zero A, the control update

ouy, is a descent direction along the nominal trajectory.

Next we provide an expression for the variation of the total cost after using the optimal

control policy (3.27).
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Lemma 3. The total cost variation at each iteration is

T

-1
1
AJ = (552 —2) Y M+ O(), (3.39)
1

e
Il

where A = (Q})T(Qi) '@}

Proof. First, let (b, 1) be the nominal state-control trajectory at iteration . We denote the

total cost at iteration ¢ (along the nominal trajectory) by

T

1
JO =N" L(by, a;) + h(by) (3.40)

1

=~
Il

and denote the cost at iteration 7 + 1 (after applying the policy) (3.27) by J*Y. In partic-
ular, J@*) will be equal to V2 in (3.28), plus some extra terms which appear when higher

order expansions of () are considered in (3.24). One can obtain

JED — V(v 1) = V2 4+ O(?)
~ 1
= L(by,m) + (582 —e)M + Vi(by) + 0(63)

- 1 ~ 1
= [,(bl, 1_11) + (562 — 5))\1 + ﬁ(bz, 1_12) + (552 — 8))\2 + V(bg) + 0(63)

~ ~ 1
= ,C(bk, l_lk) + h(bH) + (562 — 5) ()\1 + -+ >\H—1> + 0(63)
k=1
1 H-1
=J0 4 (552 —) Y M40 (3.41)
k=1

Therefore AJ = JO+D) — JO = (L2 — &) ST\, + O(?) which concludes the

proof. O

Remark 3. Based on (3.39), a valid candidate for < in (3.27) should satisfy at each iteration
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the following line search condition

JOHD g0 < e Z M, (3.42)
where k is a small positive number (e.g., k < 0.01).
Now we show the convergence of the proposed PDDP algorithm.

Theorem 1. As the iteration number approaches infinity, the total cost J and control se-

quence U converge to a stationary point for arbitrary initialization.

Proof. From the fact 0 < ¢ < 1 it is straightforward to see
1
e<l=(ze- 1)< ——-=(ze"—¢) < —5¢ (3.43)
therefore from Lemma 3 we have the cost reduction at the ith iteration
=,
AJD < —5¢ > o@HT@ '@k + 0. (3.44)
k=1

From lemma 2, there exists an £; < 1 such that

H-1

(Vu)TAU = — ) (@1)T(@Q1) '@y, Ve € (0,e1). (3.45)

k=1

Therefore the control update (3.26) is a descent direction. In addition, from (3.44), there

exists an €5 € (0, £;] such that

m

-1

ey (QVTQE)'Qr, Ve € (0,e), (3.46)

1

AJ® < —

l\')lr—\
bl
Il

which indicates that J) is monotonic decreasing for arbitrary initialization. To proceed,

we assume that the search space is compact. Hence, since J is a continuous function of U,
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there exists a control sequence U* such that

lim J@ = J(U"). (3.47)
1—00
Therefore the total cost J is convergent. In addition, (3.47) implies that as ¢ — oo, for

arbitrary initializationand £ = 1,.... H — 1

AJD - 0= QT (@™ 'Qr—0

Qispd. = (Q¥) QL — 0 (3.48)

where 0 = [0, ...,0]T € R™*!. The above condition indicates the feedforward policy Ij

defined in (3.26) vanishes as : — oo. Hence du;, — Lidvy. The initial state is given so

(5V1 =0 — (5111 — L1(5V1 —0
—> dvy = Fovi + Froug + O(||6v4[* + [[0u[|*) — 0

- (5112 — L25V2 — 0 (3.49)

It is straightforward to extend this analysis and we have du, — 0 for k = 1,..., H — 1.
Therefore the controls will converge to U*.

Lastly we show that U* is a stationary point. First note that (3.48) implies that )} — 0
for all time instants. As a consequence Q% = V2. By using the expression in Lemma 1 we

have

Vs = (Fi ) Th+ Ly = QY — 0

.
U1

Viiy ] = (Fiz—a) "1 + L (3.50)

= ( u—z)T ((fIZ—JTﬁb + El}{—l) +Ly o =Qf 5 — 0.

[ J/

-~

Ql}iflzvlg)lfl
We continue the above analysis backward in time for V?th‘] — 0,..., VyzJ — 0 hence

Vuy+J — 0. It is deduced that the controls converge to a stationary point U* for arbitrary
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initialization. ]

Remark 4. The above analysis shows that our method converges to a stationary solution
under some mild assumptions. Moreover, an explicit expression for the decrease in the cost
after each iteration is provided ( 3.39). Note that global optimality of the solution to the
original problem is not guaranteed here for two reasons: 1) the nonlinear belief dynamics
leads to a non-convex optimization problem. 2) The belief is a Gaussian approximation and

not necessarily the true posterior distribution, we have discussed this problem in section

3.3.1.

Remark 5. Our method can be classified as a second-order optimal control method and
therefore is expected to outperform standard first-order gradient-based methods, e.g., [50].
Moreover, under the aforementioned assumptions, PDDP is also capable of achieving lo-
cally quadratic convergence rates, i.e., as we get closer to the stationary solution, there

exists a constant ¢ > 0 such that

|UGHD —U*|| < ¢ UD —U*|2 (3.51)

This has been proven for scalar systems with no terminal cost term in [79] and generic
problems in [81]. We refer the reader to these papers for more details, since the same proof
can be used here. Note that this extension requires second order expansions of the belief
dynamics (4.28), which would add an extra term in Q%, Q" and Q™" 3.25. Nevertheless, in
this work we choose to use only the first order approximation of the belief dynamics (4.28).
Empirically, neglecting the Hessians of the dynamics results in a more computationally

efficient algorithm without sacrificing the quality of solution (see [82] for discussion).
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3.6 Further Analysis

3.6.1 Computational complexity

Approximate inference: The major computational effort is devoted to GP inferences. In par-
ticular, the complexity of one-step moment matching is O ((N)?n?(n +m)) [50], which is
fixed during the iterative process of PDDP. We found a small number of sampled trajecto-
ries (N < 5) are able to provide good performances for a system of moderate size (6-12
state dimensions). However, for higher dimensional problems, sparse or local approxima-
tion of GP (e.g. [61][83][84], etc) may be used to reduce the computational cost of GP
dynamics propagation.

Controller learning: According to (3.26), learning policy parameters I, and Ly, requires
computing the inverse of Q¥“, which has the computational complexity of O(m?), where m
is the dimension of control input. For the case of control constrained, the QP also lead to the
complexity of O(m?). It comes from the Cholesky factorization of the Projected Newton
solver. As a local trajectory optimization method, PDDP has a comparable scalability to

the classical DDP.

3.6.2 Relation to existing works

Here we summarize the novel features of PDDP in comparison with some notable DDP-
related frameworks for stochastic systems (see also Table 4.2). First, PDDP is inherently
different from iLQG [27] and sDDP [28], in which the dynamics model is known, and
model uncertainty is ignored. Second, PDDP shares some similarities with the belief space
iLQG [82] framework, which performs the belief space trajectory optimization based on
an extended Kalman filter. Belief space iLQG assumes a dynamics model is given and the
stochasticity comes from the process noises. PDDP, however, is a data-driven approach
that learns the dynamics models and controls from data, and it takes into account model

uncertainties using GPs. Third, PDDP is also comparable with iLQG-LD [59], which is
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based on learned dynamics using Locally Weighted Projection Regression (LWPR). The
Minimax DDP [30] uses a similar model learning approach (RFWR) with partially known
dynamics. These methods do not incorporate model uncertainty therefore requires a rela-
tively large amount of data to learn an accurate model. Furthermore, PDDP does not suffer
from the high computational cost of finite differences used to numerically compute the first-
order expansions [27][82] and second-order expansions [28] of the underlying dynamics.
PDDP computes Jacobian matrices analytically (3.15). Furthermore, a recent method AGP-
iLQR[68] shows impressive performance and also uses GPs as dynamics model. However,
it drops the uncertainty when performing multi-step predictions. In contrast, PDDP takes
into account explicit uncertainty and optimizes w.r.t. the belief over state. In terms of opti-
mization criterion, AGP-iILQR incorporates predictive variance of the state transition, this
term appears linearly in the cost function. PDDP utilizes the distribution over cost (expec-
tation and variance) as the performance criterion, which is more general. In addition, the
proposed approach is a significant extension of the preliminary work on PDDP [85]. For
instance, in this work we develop a semiparametric learning scheme by incorporating prior
model knowledge; we explore risk-sensitive learning using predicted cost variance; and we
take into account control constraints by solving a QP problem (sec. 3.4.4). All of these
extensions substantially improve the applicability of the PDDP framework.

PDDP is also related to other RL frameworks that are not based on local trajectory
optimization. The most notable algorithm is PILCO [50], a model-based policy search ap-
proach using GPs. Their main differences can be summarized as follows: first, PDDP is
a self-contained trajectory optimization method that features fast convergence, in contrast,
PILCO requires an extra optimizer for policy improvement (e.g., BFGS). Second, PILCO
requires designs of policy parameterization and solves relatively higher-dimensional op-
timization problems (depending on the number of parameters), while PDDP does not re-
quire any policy parameterization. Third, PDDP uses a forward-backward sweep scheme,

the policy improvement at time step k takes into account improvement at future steps. In
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contrast, PILCO as well as most policy gradient methods find time-independent policies,
which is less efficient.

Many other GP-based planning and Bayesian RL algorithms focus on discrete domains
or finite state/action spaces. These work usually provide an error bound for their approx-
imations, e.g.,[86, 87]. Our problem of interest is inherently different since we focus on

continuous domains.

PDDP Belief iLQG- iLQGI[27], | AGP- Minimax
space LD[59] sDDP[28] | iLQR[68] | DDP[30,
iLQG[82]/sDDP[88] 89]
Optimization | belief p, 3, | belief state x , | state x , | mean of | state x ,
variables control u w,x , | control u control u state u , | control u
control u control u
Optimization | Cost distri- | Expected Expected Expected Expected Cost incor-
criterion bution cost cost cost cost and | porates a
predic- disturbance
tive state | term
variance
Dynamics Unknown Known Unknown | Known Unknown | Partially
model (GP) or par- (LWPR) (Approx- known
tially known imate (RFWR)
(GP+parametric GP)
model)
Linearization | Analytic Ja- | Finite dif- | Analytic Finite dif- | Analytic Analytic
cobian ferences Jacobian ferences Jacobian Jacobian

Table 3.1: Comparison with DDP-related frameworks

3.7 Experimental Evaluation

In this section we evaluate the PDDP framework using three nontrivial simulated examples.
We demonstrate the performance of PDDP by comparative analyses. All experiments were

performed in MATLAB on a 3.7GHz Intel 17 PC.
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3.7.1 Tasks

In this chapter we consider 3 simulated tasks: Cart-double inverted pendulum swing-up,

PUMA-560 robotic arm reaching, and quadrotor flight.

Cart-double inverted pendulum swing-up

Cart-Double Inverted Pendulum (CDIP) swing-up is a challenging control problem because
the system is highly underactuated with 3 degrees of freedom and only 1 control input. The
system has 6 state-dimensions (cart position/velocity, link 1,2 angles and angular veloci-
ties). The physical model parameters are: masses of the cart and two links, lengths of two
links, and the coefficient of friction. The goal of the swing-up problem is to find a sequence
of control input to force both pendulums from initial position (7,7) to the inverted position
(2m,2m). The balancing task requires the velocity of the cart, angular velocities of both
pendulums to be zero. The time horizon for the task is 1.2 second and d¢ = 0.02. We
sample 5 trajectories for each optimization stage. For optimization criterion we use both
the expected (risk-neutral) cost and the risk-sensitive cost with € = 0.2. The CDIP task

posture is shown in fig.3.2a.

PUMA-560 robotic arm reaching

PUMA-560 is a 3D robotic arm that has 12 state dimensions, 6 degrees of freedom with 6
actuators on the joints. The physical model parameters are the moments of inertia, masses,
centers of gravity, lengths and offsets for 6 links. The task is to steer the end-effector to the
desired position and orientation. See an illustration in fig.3.2b. The time horizon for the
task is 2.0 second and d¢ = 0.02. We sample 3 trajectories for each optimization stage. For

optimization criterion we use the expected cost.
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Quadrotor flight

Quadrotors are underactuated rotorcraft which rely on symmetry in order to fly in a con-
ventional, stable flight regime. With 6 degrees of freedom and 4 rotors to control them,
the systems attitude is highly coupled with its 3 dimensional movement. See fig.3.7a for
an example. The objective is to start at (1, 1, 0.5) and finish at position (0.5, 1, 1.5) af-
ter 4 seconds. All velocities and angles begin at zero and should end at zero - thus the
quadrotor begins at rest at the start position and should reach the goal position and stop
there. The controls are thrust forces of the 4 rotors and we consider the control constraint
Upin = 0.5, Upmax = 3. A comparison between the constrained and unconstrained con-
trollers is shown in fig.3.8. For optimization criterion we use the risk-sensitive cost with
e = 0.5. We assume partial knowledge of the dynamics model is known, i.e., the structure
of the transition dynamics with the following unknown parameters: moments of inertia
about X,Y,Z axis, the distance of rotor to the center of mass and the mass of the quadro-
tor. Physical model parameters were learned using 5 sample rollouts and another 5 rollouts
were used for GP model learning. See sec.3.3.3 for details regarding semiparametric model

learning and inference.

(a) (b)
Figure 3.2: CDIP and Puma-560 tasks.
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Figure 3.3: Cross-entropy parameter optimization for CDIP dynamics model with bad ini-
tial guesses. The horizontal axis is iteration number and vertical axis is parameter value.
Dash lines are the true parameter values. Error bars show the mean and variance of sam-

pling distributions at each iteration. Note that some parameters converge to the true values
while some others converge to local minima.
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3.7.2 Data efficiency

For the case of unknown dynamics, both PDDP and PILCO are based on nonparametric
GP dynamics models. As shown in fig.3.4a, PDDP performs slightly worse than PILCO
in terms of data efficiency based on the number of interactions required to learn the same
tasks. The number of interactions indicates the total amount of sample rollouts required
from the physical systems. Possible reasons for the slightly worse performances are: 1)
PDDP’s policy is linear which might be restrictive, while PILCO yields nonlinear policy
parameterizations; ii) As a global method, PILCO encourages more exploration especially
in the early stages of learning. In contrast, PDDP is a local method, it searches for so-
lution in the neighborhoods of trajectories. Despite these differences, PDDP offers close
performances compared to PILCO in terms of data efficiency with less computational cost.
According to the analysis in [S0], PDDP would outperform most RL algorithms by at least
an order of magnitude in terms of data efficiency.

Number of interaction (rollout) Total computational time (minute)

407 ] 10t
PDDP-NP I PDDP-NP
=PDDP-SP | Egﬁ_%'gsp
IPILCO ol — =
102¢

10 ¢

0
CDIP Puma-560 10 CDIP Puma-560

(a) (b)

Figure 3.4: Comparison between PDDP and PILCO in terms of the number of interactions
with the physical system (a) and total computational time (b) required for learning the
CDIP and Puma-560 tasks. PDDP-NP and PDDP-SP correspond to the nonparametric and
semiparametric cases, respectively. The results were averaged over 5 independent trials.
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3.7.3 Computational efficiency

In terms of total computational time required to obtain the final controller, PDDP out-
performs PILCO significantly as shown in fig.3.4b. PILCO requires an iterative method
(e.g.,CG or BFGS) to solve global and high dimensional optimization problems (depend-
ing on the policy parameterization). In contrast, PDDP successively computes local optimal
controls (3.26) without an extra optimizer and features fast convergence [79]. The major
computational demand of PDDP comes from the approximate inference in GPs (moment
matching). We did not use any approximate GP methods such as local GP [61, 90] or sparse
GP [83, 91, 92, 93] approximations. These methods can be applied in PDDP to speed up

computations when the training data size is large, e.g., [94].

3.7.4 Nonparametric vs. semiparametric learning

As shown in fig.3.4, PDDP based on semiparametric model learning and inference (with
known basis function) outperforms both PDDP and PILCO under unknown dynamics in
terms of data and computational efficiency. To distinguish the effect of parametric and
nonparametric models, at each learning stage we use the old samples from previous stages
for parameter estimation. The purpose of the parametric model is to generalize to the state-
action space regions that are far away from the training data used for nonparametric model
learning. This result is not surprising but it shows the potential of applying PDDP in a
more practical way. In real world applications these basis functions are usually available
for mechanical/robotics systems from physics-based models. Learning the model from
scratch is conceptually appealing but practically challenging when the available data are
not sufficiently informative. In addition, the semiparametric approach takes into account
the uncertainty of parametric modeling error. For instance, fig.3.3 show the physical model
parameter learning performance for the CDIP task using algorithm 1. Due to data insuffi-
ciency some parameter estimations deviate from the true values. This parametric error is

learned. as the GP_error, dynamics model (see section 3.3.3). The semiparametric PDDP
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could be applied to more challenging tasks compared with purely nonparametric methods.
For example, the quadrotor system has highly coupled outputs. In contrast, the nonpara-
metric GP assumed independent output for each dimension, therefore has limited modeling
power in this case. We use the semiparametric PDDP to successfully learn a policy in a
single optimization stage. Results for policy learning and testing are shown in fig.3.7. The

optimization takes less than 20 iterations (see fig.3.7b).

3.7.5 Risk-sensitive vs. risk-neutral learning

Another distinct feature for PDDP is that it incorporates the probability distribution over
the cost as the performance criterion (see section 3.4.2). More precisely the mean and
variance of the predicted cost. We evaluate the effect of the cost function by comparing
the risk-sensitive and risk-neutral cases for the CDIP task. Fig.3.5 shows the predicted
cost distributions during the early and final learning stages. The risk-sensitive learning
leads to relatively less cost uncertainties due to the penalization on predicted cost variance.
Fig.3.6 shows the learning curves for 4 cases on the same task. We use 3 and 5 rollouts
at each optimization phase for both risk-neutral and risk-sensitive learning. An interest-
ing phenomenon is that when using only 3 rollouts (180 data points) for learning. The
risk-sensitive policy outperforms risk-neutral policy significantly. This is because when
the sample data are sparse in state-action regions, the risk-sensitive criterion restricts ex-
ploration in the local region that are close to the sampled data and nominal trajectories. In
contrast, in the risk-neutral case, applying PDDP policy results in higher costs because the
cost variance is higher. When using 5 rollouts (300 data points) per stage, the risk-sensitive
policy learns slower than risk-neutral in the early stages. But they perform similarly in
the final stages. PDDP with both criteria are able to learn the task within about 7-8 opti-
mization stages. Even in the risk-neutral case, PDDP would avoid explorations in highly
uncertain regions because the expected cost (3.17) depends on predictive variance of the

state. Risk-sensitive learning is more conservative and shows encouraging performance
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when using a very small amount of training data.
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Figure 3.5: Comparison of the predicted trajectory cost distributions between risk-neutral
(a,b) and risk-sensitive (c,d) learning via PDDP. Early stage and final stage correspond to
the predictions after 1 and 8 optimization stages.

3.8 Discussion

In this work our goal is to address the principle challenges of applying reinforcement
learning (RL) in complex real-world scenarios, namely data efficiency, computational cost
and scalability. Thus we have introduced Probabilistic Differential Dynamic Programming
(PDDP), a model-based RL framework for systems with unknown or partially known dy-

namics. PDDP is derived based on two main components: 1) local trajectory optimization
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Figure 3.6: Total trajectory costs by applying PDDP policy after each optimization stage
for risk-neutral (¢ = 0) and risk-sensitive learning (¢ = 0.2). 3 and 5 rollouts were used for
learning in both cases.
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Figure 3.7: The quadrotor flight task. (a) Quadrotor simulation environment. (b) Expected
trajectory cost reduction during PDDP optimization. (c) Trajectory costs over 10 indepen-
dent trials using the optimized control policy. (d) State trajectories of the quadrotor task
collected over 10 independent trials using the optimized controller. Dash lines are desired
states.

via forward-backward sweeps, which is a classical method under the name Differential
Dynamics Programming (DDP) [26]. 2) Probabilistic modeling and approximate inference
with Gaussian processes (GPs). PDDP integrates the aforementioned components by rep-
resenting the system dynamics using GPs and performing optimization in Gaussian belief
spaces. To further improve its applicability, we explored the case of risk-sensitive trajectory
optimization.

PDDP generalizes the deterministic [26] and stochastic [27, 28] trajectory optimization

to a probabilistic setting, i.e. probabilistic trajectory optimization. By taking advantages
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Figure 3.8: Constrained and unconstarined control inputs (4 motor torques) for the quadro-
tor task. The constraint is incorporated by solving a QP (sec.3.4.4)

of recent development in GPs, PDDP offers data efficiency superior to methods based on
learned determinstic models, and comparable to the state of the art GP-based policy search
method [50]. Compared with typical gradient-based policy search methods, PDDP fea-
tures a more computationally efficient policy improvement scheme. PDDP yields local
control policies and requires no a-priori policy parameterization. These strengths lead to a
combination of data efficiency, computational efficiency and scalability. Theoretically, we
provide analyses showing our algorithm converges to a stationary point globally. To our
best knowledge, our analyses offer the most general convergence proof for DDP-related
methods [26, 79, 80, 27, 29, 58, 68, 59]

The computational efficiency of probabilistic inference can be further improved. The
possibility of using sampling-based methods (such as in PEGASUS [95]) instead of de-
terministic inference has been discussed in [55]. However, it may lead to derivatives with
high variance and it is more suitable for sampling-based (gradient-free) methods, e.g.,[96].
Approximate GPs, such as local GP [61, 90] or sparse GP [83, 92], can be exploited to
improve the computational efficiency. For instance, Sparse Spectrum GPs have been used
for fast inference in trajectory optimization [94, 97, 98] when 1) the optimization needs to

be performed in real-time and receding horizon fashion, 2) training dataset is big and 3) the
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task, dynamics and environment are time-varying.

Application of probabilistic trajectory optimization to real robotic systems is worth fur-
ther investigation. In addition, our approximate inference method does not have an explicit
error bound. Numerical methods such as Gaussian quadrature could provide more accurate
approximations and an error bound [71]. However, such numerical methods are usually
more computationally expensive than closed-form computation as we do here. Further

investigation on combining the benefits of these methods with ours is left for future work.
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CHAPTER 4
PATH INTEGRAL CONTROL UNDER UNCERTAIN DYNAMICS

In this chapter we present two stochastic optimal control (SOC) frameworks for systems
with unknown or partially known dynamics based on the path integral formulation and
probabilistic inference. We show that the optimal control can be computed in a sampling-
based and gradient-based fashion without replying on local approximation used in PDDP

(see chapter 3).

4.1 Introduction

Stochastic optimal control (SOC) is a general and powerful framework with applications
in many areas of science and engineering. However, despite broad applicability, solv-
ing SOC problems remains challenging for systems in high-dimensional continuous state-
action spaces [56, 57]. Over the last decade, SOC based on exponential transformation
of the value function has demonstrated remarkable applicability in solving real world con-
trol and planning problems. In control theory, the exponential transformation of the value
function was introduced in [32, 33]. In the past decade it has been explored in terms of
path integral interpretations and theoretical generalizations [34, 35, 36, 37], discrete time
formulations [38], and scalable reinforcement learning/control algorithms [39, 40, 41, 42,
43, 44]. The resulting stochastic optimal control frameworks are known as Path Integral
(PI) control for continuous time, Kullback Leibler (KL) control for discrete time, or more
generally Linearly Solvable Optimal Control [38, 45]. In this work we focus on the PI
control framework.

One of the most attractive characteristics of PI control is that optimal control problems
can be solved with forward sampling of Stochastic Differential Equations (SDEs). How-

ever, for model-based PI frameworks [34, 35, 36, 43, 37], full knowledge of a dynamics
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model is required to perform sampling. And these samples do not take into account any
model uncertainty. In addition, for PI-based model-free policy search frameworks [39, 40],
an intelligent choice of policy parameterization is required and expert demonstrations are
usually necessary for policy initialization. In the following we develop two data-driven
PI control methods to cope with these issues. In section 4.2, we introduce a gradient-
based algorithm where all gradients are computed analytically. In section 4.3, we present
a sampling-based approach where each sample consists of predictive state distributions

computed via sparse spectrum GP inference.

4.2 Gradient-based Approach

Motivated by the aforementioned limitations, in this chapter we introduce a sample effi-
cient, gradient-based approach to PI control. Different from existing PI control approaches,
our method combines the benefits of PI control theory [34, 35, 36] and probabilistic model-
based reinforcement learning methodologies [55, 50]. The main characteristics of the our

approach are summarized as follows

e It extends the PI control theory [34, 35, 36] to the case of uncertain systems. The
structural constraint is enforced between the control cost and uncertainty of the
learned dynamics, which can be viewed as a generalization of previous work [34,

35, 36].

e Different from parameterized PI controllers [39, 40, 43, 37], we find analytic control

law without any policy parameterization.

e Rather than keeping a fixed control cost weight [34, 35, 36, 39, 99], or ignoring the
constraint between control authority and noise level [40], in this work the control cost

weight is adapted based on the explicit uncertainty of the learned dynamics model.

e The algorithm operates in a different manner compared to existing PI-related meth-

ods-that-perform-forward sampling [34, 35, 36, 39, 99, 40, 41, 43, 37]. More precisely
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our method perform successive deterministic approximate inference and backward

computation of optimal control law.

e The proposed model-based approach is significantly more sample efficient than sampling-
based PI control [34, 35, 36, 99]. In RL setting our method is comparable to the state-

of-the-art RL methods [50, 85] in terms of sample and computational efficiency.

e Thanks to the linearity of the backward Chapman-Kolmogorov PDE, the learned con-
trollers can be generalized to new tasks without re-sampling by constructing compos-
ite controllers. In contrast, most policy search and trajectory optimization methods

[39, 40, 43, 50, 85, 100, 101, 102] find policy parameters that can not be generalized.

4.2.1 Preliminaries

In contrast to the generic problem defined in chapter 1, we consider a slightly different

class of nonlinear stochastic system described by the following differential equation
dx = (f(x) + G(x)u)dt + Bdw, 4.1)

with state x € R"”, control u € R™, and standard Brownian motion noise w € RP with

variance X,,. f(x) is the unknown drift term (passive dynamics), G(x) € R™*™ is the

control matrix and B € R™*? is the diffusion matrix. Given some previous control u®?, we

seek the optimal control correction term Ju such that the total control u = u®? 4 du. The
original system becomes
dx = (f(x) + G(x)(u”? 4 0u))dt + Bdw = (£f(x) + G(x)u”?) dt + G(x)dudt + Bdw.

N J/
-

f(x,ucld)
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In this work we assume the dynamics based on the previous control can be represented by

Gaussian processes (GP) such that
fop(x) = f(x, u’d)dt, (4.2)

where fgp is the GP representation of the biased drift term f under the previous control.

Now the original dynamical system (4.20) can be represented as follow
dx = fgp + Gdudt, fep ~ GP(0, K(x;,x;)), (4.3)

where we use a prior of zero mean and covariance function K(x;, x;) = o2 exp(—3(x; —
x;)TW(x; — x;)) + 6;;0%, with 04,0, W the hyper-parameters. d;; is the Kronecker

symbol that is one iff 7 = j and zero otherwise. Samples over fgp can be drawn using an

vector of i.i.d. Gaussian variable )
f.GIP =y + LfQ “4.4)

where L is obtained using Cholesky factorization such that ¥y = L;Lj. Note that
generally € is an infinite dimensional vector and we can use the same sample to repre-
sent uncertainty during learning [103]. Without loss of generality we assume ) to be
the standard zero-mean Brownian motion. For the rest of the chapter we use simplified
notations with subscripts indicating the time step. The discrete-time representation of
the system is Xy a1 = X + ppy + G owdt + L ftQt\/E, and the conditional probabil-
ity of x;,4; given x; and du; is a Gaussian p(xt+dt|xt, 5ut) =N (ut Lt EHdt), where
Mipar = Xe + g + G ou; and Xy, q; = Xy In this work we consider a finite-horizon

stochastic optimal control problem

ﬁ(Xt, (5ut)dt] y
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where the immediate cost is defined as £(x;,u;) = q(x;) + 20u/R;0u;, and ¢(x;) =
(x; —xH)TQ(x; —x¥) is a quadratic cost function where x{ is the desired state. R; = R(x;)
is a state-dependent positive definite weight matrix. Next we show the linearized Hamilton-

Jacobi-Bellman equation for this class of optimal control problems.

4.2.2 Linearized Hamilton-Jacobi-Bellman Equation for Uncertain Dynamics

At each iteration the goal is to find the optimal control update du, that minimizes the value

function

t+dt
V(xy,t) = minE[/ L(x, 0ug)dt + V(x, + dxg, t + dt)dt|x, |- 4.5)
t

511,5

(4.22) is the Bellman equation. By approximating the integral for a small d¢ and applying
Ito’s rule we obtain the Hamilton-Jacobi-Bellman (HJB) equation (detailed derivation is

skipped):
: Lo 1 T 1
_at‘/; = I?IH(Qt + §5ut Rtéut + (l,llft + Gt5ut) Vth + 5 TI'(Efthth))

To find the optimal control update, we take gradient of the above expression (inside the
parentheses) with respect to du, and set to 0. This yields du; = —R; 'GTV, V,. Inserting

this expression into the HJB equation yields the following nonlinear and second order PDE

1 1
—0Vi=aq+ (VxVe) s — §(VXVt)TGtR‘1GfoVt +3 Tr(X; Ve V). (4.6)

In order to solve the above PDE we use the exponential transformation of the value function
Vi = —Alog ¥y, where ¥, = W(x;) is called the desirability of x;. The corresponding

partial derivatives can be found as 0,V; = —\I%(Z\Ift, ViV, = —\%Vx\lft and V4V, =
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%vxwtvx\pf — \I%VXX\I/,, Inserting these terms to (4.35) results in

A 22 B
Eat\ljt =qy — E(vxmt>’rﬂﬁ - Q—q}%(vx@t)TGth 1G;FVX\I/15 (47)
A A
+ 2_\Ift2 rI\r<(VXkIjt)T2fth\Ijt) - Q_‘Ift ﬁ(vqujtz]ft)'

The quadratic terms V4 W, will cancel out under the assumption of A\G;R; 1GtT =X
This constraint is different from existing works in path integral control [34, 35, 36, 39,
99, 37] where the constraint is enforced between the additive noise covariance and control
authority, more precisely A\G,R; 'G = BX_,B™. The new constraint enables an adaptive
update of control cost weight based on explicit uncertainty of the learned dynamics. In
contrast, most existing works use a fixed control cost weight [34, 35, 36, 39, 99, 41, 43,
37]. This condition also leads to more exploration (more aggressive control) under high
uncertainty and less exploration with more certain dynamics. Given the aforementioned

assumption, the above PDE is simplified as

1 1
A thqjt - “?tvxwt - 5 TI'(Vxx‘I’tEft)a (4.8)

subject to the terminal condition ¥y = exp(—5¢r). The resulting Chapman-Kolmogorov
PDE (4.36) is linear. In general, solving (4.36) analytically is intractable for nonlinear
systems and cost functions. We apply the Feynman-Kac formula which gives a probabilistic

representation of the solution of the linear PDE (4.36)

T—dt

. 1
V= dltlgo p(7efx,) exp ( a X(Z - qjdt>)\I'Td7't7 4.9)
]:
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where 7; is the state trajectory from time ¢ to 7. The optimal control is obtained as

) ) (VT AR
G0ty = —GR;'GT(ViVi) = AG/R,; 1GtT( : t) - zft( t)
t

2
Vx\Ijt )
v, J°

(4.10)

i = uf 4 ot =+ G

Rather than computing V¥, and ¥,, the optimal control 11, can be approximated based on

path costs of sampled trajectories. Next we briefly review some of the existing approaches.

4.2.3 Relation to Existing Works

According to the path integral control theory [34, 35, 36, 39, 99, 37], the stochastic op-
timal control problem becomes an approximation problem of a path integral (4.37). This
problem can be solved by forward sampling of the uncontrolled (u = 0) SDE (4.20). The
optimal control 1, is approximated based on path costs of sampled trajectories. Therefore
the computation of optimal controls becomes a forward process. More precisely, when
the control and noise act in the same subspace, the optimal control can be evaluated as

the weighted average of the noise u; = K7, x,) [dwt], where the probability of a tra-

-1 Tt |X
jectory is p(ry|x;) = exp(— 1+ S(re|x¢))

= Tom (Lot and S(7|x;) is defined as the path cost computed
A

by performing forward sampling. However, these approaches require a large amount of
samples from a given dynamics model, or extensive trials on physical systems when ap-
plied in model-free reinforcement learning settings. In order to improve sample efficiency,
a nonparametric approach was developed by representing the desirability W, in terms of
linear operators in a reproducing kernel Hilbert space (RKHS) [41]. As a model-free ap-
proach, it allows sample re-use but relies on numerical methods to estimate the gradient
of desirability, i.e., V¥, , which can be computationally expensive. On the other hand,
computing the analytic expressions of the path integral embedding is intractable and re-
quires exact knowledge of the system dynamics. Furthermore, the control approximation
is based on samples from the uncontrolled dynamics, which is usually not sufficient for

highly-nonlinear.or.underactuated systems.
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Another class of Pl-related method is based on policy parameterization. Notable ap-
proaches include PI? [39], PI>-CMA [40], PI-REPS[43] and recently developed state-
dependent PI[37]. The limitations of these methods are: 1) They do not take into account
model uncertainty in the passive dynamics f(x). 2) The imposed policy parameterizations
restrict optimal control solutions. 3) The optimized policy parameters can not be gener-
alized to new tasks. A brief comparison of some of these methods can be found in Table
1. Motivated by the challenge of combining sample efficiency and generalizability, next

we introduce a probabilistic model-based approach to compute the optimal control (4.10)

analytically.
PI [34, 35], iterative PI [99] [ PI?[39], PIZ-CMA [40] | PI-REPS[43]] State feedback PI[37] Our method
Structural constraint pyen R;IG;F =BXY, BT same as PI same as PI same as PI AGRIGT = Ef
Dynamics model model-based model-free model-based model-based GP model-based
Policy parameterization No Yes Yes Yes No

Table 4.1: Comparison with some notable and recent path integral-related approaches.

4.2.4  Analytic Path Integral Control: a Forward-Backward Scheme

In order to derive the proposed framework, firstly we learn the function fgp(x;) = f (x, ud)dt+
Bdw from sampled data. Learning the continuous mapping from state to state transition
can be viewed as an inference with the goal of inferring the state transition dx; = fgp(x;).
The kernel function has been defined in Sec.4.2.1, which can be interpreted as a similarity
measure of random variables. More specifically, if the training input x; and x; are close
to each other in the kernel space, their outputs dx; and dx; are highly correlated. Given
a sequence of states {Xo, ...xr}, and the corresponding state transition {dX, ...,dXz},
the posterior distribution can be obtained by conditioning the joint prior distribution on the
observations. In this work we make the standard assumption of independent outputs (no
correlation between each output dimension).

To propagate the GP-based dynamics over a trajectory of time horizon 7" we employ the
moment matching approach [48, 50] to compute the predictive distribution. Given an input

distribution.overthestate N (p,, X;), the predictive distribution over the state at ¢ + d¢ can
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be approximated as a Gaussian p(X¢rat) = N (44, Li+ar) such that

l’l’t—i-dt = Ky -+ [,l,ft, 2t+dt = Et —+ Eft —+ (C@V[Xt, df(t] -+ C@V[dit, Xt]. (411)

The above formulation is used to approximate one-step transition probabilities over the
trajectory. Details regarding the moment matching method can be found in [48, 50]. All
mean and variance terms can be computed analytically. The hyper-parameters o, o,,, W
are learned by maximizing the log-likelihood of the training outputs given the inputs [47].
Given the approximation of transition probability (4.27), we now introduce a Bayesian non-
parametric formulation of path integral control based on probabilistic representation of the
dynamics. Firstly we perform approximate inference (forward propagation) to obtain the
Gaussian belief (predictive mean and covariance of the state) over the trajectory. Since the
exponential transformation of the state cost exp(—1¢(x)d¢) is an unnormalized Gaussian
N (x?,2Q"). We can evaluate the following integral analytically

1 dt
/N(HJ,Z]) exp ( — qudt)dxj = ‘I“r KEJQ

-3 1 dt dt _
? exp ( = (1 = x)T QU+ SNE;Q) 7 (y — x;l)), (4.12)

for j =t 4 dt,...,T. Thus given a boundary condition U7 = exp(—5¢r) and predictive
distribution at the final step A/ (1, X7), we can evaluate the one-step backward desirability
W4 analytically using the above expression (4.12). More generally we use the following

recursive rule

1
U, q = ®(x;,7;) = //\/(p,j, ¥;)exp (— qudt)\lfjdxj, (4.13)

for j = t+dt,...,T'—dt. Since we use deterministic approximate inference based on (4.27)
instead of explicitly sampling from the corresponding SDE, we approximate the conditional

distribution p(x;|x;_q;) by the Gaussian predictive distribution NV(p;, 33;). Therefore the
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path integral

T—dt

U, = /p(Tt\Xt) exp ( — %( Z qjdt))\I/Tth

~ / /N(uT,dt, Edet) exp ( — %qT,dtdt) /N(uT, ZT) exp ( - %qT) dxp dxr_qp ...dXspar

N—————’
W
Yr_at
Wr_oat
1
= /N(Htert: Etert) exp ( - XQtertdt) Wi yardxsyar = P(Xeqars ‘I’Hdt)- (4.14)

We evaluate the desirability W; backward in time by successive computation using the
above recursive expression. The optimal control law 1, (4.10) requires gradients of the
desirability function with respect to the state, which can be computed backward in time
as well. For simplicity we denote the function ®(x;, ¥;) by ®;. Thus we compute the

gradient of the recursive expression (4.14)

vx\pjfdt = ‘IJJVX(I)] + q)]vx\p], (415)

where j = t+dt, ..., T'— dt. Given the expression in (4.12) we compute the gradient terms
in (4.15) as

d®, dp(x;) 0®;dp; 0®; dY, O, dt dt _
Pj=— 3 =4 7 J ==V where —2 = ®;(p; —xHT —Q(I + ~1%;Q) !
Vx®i = ) dx, opy dx, 0%, dx, T o, 5 = x5)7 3 QU+ 57A%,Q)
00; _ @, cdt dt 1 d AT dt dt .
0%, - 7(5Q<I + ﬁ)‘sz) (Nj - Xj) (Hj - Xj) - I)ﬁQ(I + 5/\230.) , and

d{Nj7Ej}:{ op; dﬂjfdt_’_ op; d¥;_q 0% dujfdt_’_ 0% dzjfdt}.
dxt 8uj_dt dXt 32]‘_(” dXt ’ 0/Lj_dt dXt 82j—dt dXt

oM o 023, 923,
O, _ g4’ azjfdt’ Oy’ 82j7dt

can be computed analytically as in [50]. We compute all gradients using this scheme with-

The term VW _ g4, is compute similarly. The partial derivatives

out any numerical method (finite differences, etc.). Given ¥; and V¥, the optimal control
takes a analytic form as in eq.(4.10). Since ¥, and V4V, are explicit functions of x;, the re-
sulting control law is essentially different from the feedforward control in sampling-based

path.integral control frameworks [34, 35, 36, 39, 99] as well as the parameterized state
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feedback PI control policies [43, 37]. Notice that at current time step ¢, we update the
control sequence U, 7 using the presented forward-backward scheme. Only 1, is applied
to the system to move to the next step, while the controls 0,14 7 are used for control
update at future steps. The transition sample recorded at each time step is incorporated to
update the GP model of the dynamics. A summary of the proposed algorithm is shown in

Algorithm 3.

Algorithm 3 Sample efficient path integral control under uncertain dynamics

. Initialization: Apply random controls 1, 7 to the physical system (4.20), record data.

1
2: repeat
3 for t=0:T do
4: Incorporate transition sample to learn GP dynamics model.
5 repeat
6: Approximate inference for predictive distributions using uy", = o, _r,
see (4.27).
7: Backward computation of optimal control updates du; 7, see
(4.14)(4.15)(4.10).
8: Update optimal controls 0, 7 = ug"; + 01, 7.
until Convergence.
10: Apply optimal control G; to the system. Move one step forward and record
data.
11: end for

12: until Task learned.

4.2.5 Generalization to Unlearned Tasks without Sampling

In this section we describe how to generalize the learned controllers for new (unlearned)
tasks without any interaction with the real system. The proposed approach is based on
the compositionality theory [104] in linearly solvable optimal control (LSOC). We use
superscripts to denote previously learned task indexes. Firstly we define a distance measure

between the new target X% and old targets x%  k = 1, .., K, i.e., a Gaussian kernel

wh = exp ( - %()‘(d —x®)TP(x? — xdk)>, (4.16)

77

www.manaraa.com



where P is a diagonal matrix (kernel width). The composite terminal cost g(x7) for the

new task becomes

(4.17)

> o exp(—iqwa)))

7(x7) = —Mlo
o) g < 21[::1 wk

where ¢*(x7) is the terminal cost for old tasks. For conciseness we define a normalized

. ~k o wk
distance measure w* = K

on (4.17) we have the composite terminal desirability for the new task which is a linear

which can be interpreted as a probability weight. Based

combination of W%,

K
@T:wmp<-§qu0::§:aﬁwg (4.18)
k=

Since U¥ is the solution to the linear Chapman-Kolmogorov PDE (4.36), the linear com-
bination of desirability (4.18) holds everywhere from ¢ to 7" as long as it holds on the

boundary (terminal time step). Therefore we obtain the composite control

K

ALY
u; = K—~ut . (419)
; D ey WFUE

The composite control law in (4.19) is essentially different from an interpolating control
law[104]. It enables sample-free controllers that constructed from learned controllers for
different tasks. This scheme can not be adopted in policy search or trajectory optimization
methods such as [39, 40, 43, 50, 85, 100, 101, 102]. Alternatively, generalization can be
achieved by imposing task-dependent policies [105]. However, this approach might restrict

the choice of optimal controls given the assumed structure of control policy.

4.2.6 Experiments and Analysis

We consider 3 simulated RL tasks: cart-pole (CP) swing up, double pendulum on a cart
(DPC) swing up, and PUMA-560 robotic arm reaching. The CP and DPC systems consist

of a cart and a single/double-link pendulum. The tasks are to swing-up the single/double-
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link pendulum from the initial position (point down). Both CP and DPC are under-actuated
systems with only one control acting on the cart. PUMA-560 is a 3D robotic arm that has
12 state dimensions, 6 degrees of freedom with 6 actuators on the joints. The task is to
steer the end-effector to the desired position and orientation.

In order to demonstrate the performance, we compare the proposed control framework
with three related methods: iterative path integral control [99] with known dynamics model,
PILCO [50] and PDDP [85]. Iterative path integral control is a sampling-based stochastic
control method. It is based on importance sampling using controlled diffusion process
rather than passive dynamics used in standard path integral control [34, 35, 36]. Iterative
PI control is used as a baseline with a given dynamics model. PILCO is a model-based
policy search method that features state-of-the-art data efficiency in terms of number of
trials required to learn a task. PILCO requires an extra optimizer (such as BFGS) for
policy improvement. PDDP is a Gaussian belief space trajectory optimization approach. It
performs dynamic programming based on local approximation of the learned dynamics and
value function. Both PILCO and PDDP are applied with unknown dynamics. In this work
we do not compare our method with model-free PI-related approaches such as [39, 40, 41,
43] since these methods would certainly cost more samples than model-based methods such
as PILCO and PDDP. The reason for choosing these two methods for comparison is that
our method adopts a similar model learning scheme while other state-of-the-art methods,
such as [100] is based on a different model.

In experiment 1 we demonstrate the sample efficiency of our method using the CP and
DPC tasks. For both tasks we choose 1" = 1.2 and d¢ = 0.02 (60 time steps per roll-
out). The iterative PI [99] with a given dynamics model uses 103/10* (CP/DPC) sample
rollouts per iteration and 500 iterations at each time step. We initialize PILCO and the
proposed method by collecting 2/6 sample rollouts (corresponding to 120/360 transition
samples) for CP/DPC tasks respectively. At each trial (on the true dynamics model), we

use 1 sample rollout for PILCO and our method. PDDP uses 4/5 rollouts (corresponding
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to 240/300 transition samples) for initialization as well as at each trial for the CP/DPC
tasks. Fig. 4.1 shows the results in terms of W, and computational time. For both tasks our
method shows higher desirability (lower terminal state cost) at each trial, which indicates
higher sample efficiency for task learning. This is mainly because our method performs
online re-optimization at each time step. In contrast, the other two methods do not use
this scheme. However we assume partial information of the dynamics (G matrix) is given.
PILCO and PDDP perform optimization on entirely unknown dynamics. In many robotic
systems G corresponds to the inverse of the inertia matrix, which can be identified based
on data as well. In terms of computational efficiency, our method outperforms PILCO
since we compute the optimal control update analytically, while PILCO solves large scale
nonlinear optimization problems to obtain policy parameters. Our method is more com-
putational expensive than PDDP because PDDP seeks local optimal controls that rely on
linear approximations, while our method is a global optimal control approach. Despite the
relatively higher computational burden than PDDP, our method offers reasonable efficiency

in terms of the time required to reach the baseline performance.

Cart-pole Double pendulum on a cart
1 1.
-------------- = = Iterative PI (true model, 10° sampiter) — = Iterative PI (true model, 10* sampyiter)
0.9} —6— PILCO (1 sample/trial) —©—PILCO (1 sampleltrial)
—¢— PDDP (4 samples/trial) —3¢—PDDP (5 samples/trial)
0.8} Ours (1 sample/trial) Ours (1 sample/trial)
0.7t 15 350
0.6 300
505} 10 250

o o
N w
Time
o

o3 % 1 2 3
1 2
‘ Trial# : Trial# Trial# ’ Trial#

(a) (b)

Figure 4.1: Comparison in terms of sample efficiency and computational efficiency for
(a) cart-pole and (b) double pendulum on a cart swing-up tasks. Left subfigures show the
terminal desirability W (for PILCO and PDDP, ¥+ is computed using terminal state costs)
at each trial. Right subfigures show computational time (in minute) at each trial.

In experiment 2 we demonstrate the generalizability of the learned controllers to new
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tasks using the composite control law (4.19) based on the PUMA-560 system. We use 1" =
2 and dt = 0.02 (100 time steps per rollout). First we learn 8 independent controllers using
Algorithm 3. The target postures are shown in Fig. 4.2. For all tasks we initialize with 3
sample rollouts and 1 sample at each trial. Blue bars in Fig. 4.2b shows the desirabilities
W after 3 trials. Next we use the composite law (4.19) to construct controllers without re-
sampling using 7 other controllers learned using Algorithm 3. For instance the composite
controller for task#1 is found as u; = 2222 %ﬁf . The performance comparison
of the composite controllers with controllers learned from trials is shown in Fig. 4.2. It
can be seen that the composite controllers give close performance as independently learned
controllers. The compositionality theory [104] generally does not apply to policy search
methods and trajectory optimizers such as PILCO, PDDP, and other recent methods [100,

101, 102]. Our method benefits from the compositionality of control laws that can be

applied for multi-task control without re-sampling.

1.2
[l Independent controller (1 samp/trial, 3 trials)

[ IComposite controller (no sampling)

2 3 4 5 6 7 8
Task#

(a) (b)

Figure 4.2: Resutls for the PUMA-560 tasks. (a) 8 tasks tested in this experiment. Each
number indicates a corresponding target posture. (b) Comparison of the controllers learned
independently from trials and the composite controllers without sampling. Each composite
controller is obtained (4.19) from 7 other independent controllers learned from trials.
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4.2.7 Summary and Discussion

We presented an iterative learning control framework that can find optimal controllers un-
der uncertain dynamics using very small number of samples. This approach is closely
related to the family of path integral (PI) control algorithms. Our method is based on a
forward-backward optimization scheme, which differs significantly from current PI-related
approaches. Moreover, it combines the attractive characteristics of probabilistic model-
based reinforcement learning and linearly solvable optimal control theory. These charac-
teristics include sample efficiency, optimality and generalizability. By iteratively updat-
ing the control laws based on probabilistic representation of the learned dynamics, our
method demonstrated encouraging performance compared to the state-of-the-art model-
based methods. In addition, our method showed promising potential in performing multi-
task control based on the compositionality of learned controllers. Besides the assumed
structural constraint between control cost weight and uncertainty of the passive dynamics,
the major limitation is that we have not taken into account the uncertainty in the control

matrix G.

4.3 Sampling-based Approach

In this section we develop a sampling-based method that is slightly more general than
the gradient-based method introduced previously. Instead of using full GPs for dynam-
ics modeling and prediction, we leverage the Sparse Spectrum Gaussian Process (SSGP)
[91], which is based on kernel function approximation using finite dimensional random
feature mappings [106]. Algorithms for SSGP regression have demonstrated a superior
combination of computational efficiency and predictive accuracy compared to approxima-
tion strategies such as the Fully Independent Training Conditional (FITC) model [91] and
Locally Weighted Projection Regression (LWPR) [107]. In this work we use SSGP re-

gression to generate sample rollouts in the belief space, therefore model uncertainty can
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be incorporated explicitly. In order to improve convergence speed, we propose a covari-
ance matrix adaptation scheme to update the exploration magnitude automatically within
the probability-weighted averaging framework.

In the following, we summarize the distinct characteristics of our method:

e The proposed method is data-driven and no prior knowledge of the system dynamics

is required.

e Sampling is performed in belief space. Each sample takes into account predictive

model uncertainty.

e The exploration noise covariance matrix is adapted via probability-weighted averag-

ing.

4.3.1 Preliminaries

In contrast to the special class of systems considered in the previous method, here we con-
sider a general class of nonlinear stochastic system described by the differential equation
dx = f(x,u)dt + dw, (4.20)

with state x € R", control u € R™, and standard Brownian motion noise w € RP. f :
R™ x R™ — R"™ is the unknown transition function. In this section we consider a finite-

horizon stochastic optimal control problem

L(x(t), u(t))dt} , 421)

J(x(0))

where the immediate cost is defined as £(x, u) = ¢(x) + su”Ru. R is a positive definite
weight matrix. For the rest of our analysis, we discretize the time using the Euler scheme as

k=1,2,..., H with time step At = = and denote x;, = x(t;). We use this subscript rule
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for other time-varying variables as well. The discretized system dynamics can be written
as Xpi1 = X + Axy, + VALE, where Ax;, = At f(xx,uy) and &, is IID with N'(0, ).
To simplify notation we define f(xy, u;) = Atf(xy, ug). The goal is to find the optimal
control uy, at each time step that minimizes the value function

V(x, k) = minE[L’(xk, w) + V(xpsr, b+ 1)]Xk]. 4.22)

Ug

where V' is called value function. The above equation is known as the Bellman equation.
Note that the dynamics model f is unknown and needs to be learned from data. In the next

section, we present a probabilistic scheme to learn the dynamics.

4.3.2 Model Learning via Sparse Spectrum Gaussian Processes

In standard GP regression (GPR), we assume the transition function has a prior distribution
f(x) ~ GP(m, k), where m : R x R™ — R" and k : R” x R® — R are the mean
and covariance functions, respectively. Without loss of generality, we consider zero mean
m = 0 and the popular Squared Exponential (SE) covariance function with Automatic

Relevance Determination (ARD) distance measure
1
k(% %) = 0F exp(—g(ii —%,))"PHx; — X)) + 02845, (4.23)

where 0;; is a Kronecker delta which is one iff ¢ = j and zero otherwise. P = diag(] l% li o
The hyperparameters of the kernel consist of the signal variance J]%, the noise variance o2
and the length scales for input space 1 = [ ... l,,1., |. Given a dataset of state-control pairs
and the corresponding state transition D = {(x;; u;), Ax;}¥, , the posterior distribution is
exactly Gaussian and can be computed in closed-form. Unfortunately, GPR exhibits sig-
nificant practical limitations for learning and inference on large datasets due to its O(N?)

computation and O(NN?) space complexity, which is a direct consequence of having to store

and invert a N x N matrix [47]. This computational inefficiency is a bottleneck for applying
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GP-based method in real-time.
In order to scale up kernel methods such as GPs, random features can be used to ap-
proximate kernel functions. Based on Bochner’s theorem [108], any shift-invariant kernel

function can be represented as the Fourier transform of a unique measure

k(xi —%x;) = / + ¢ ) p(w)dw = Ewlzw (%) 2w (%;)],
Rn m

where 7z (X) = [cos(wTx) sin(w'x)]T. We can approximate the SE kernel function by

drawing r random samples from the distribution p(w) = N (0, P—l)
k(% %) Zcbwz ), (%) = (%) b(%e), (424)

where ¢, (X) = \}[ cos(wix) sin(w]x) |7 is afeature mapping. Therefore the state

transition function can be represented as a weighted sum of the feature functions

o5 T4
Ax=f(x) =w'$p(X), $(x) = |V CéS(QTi{> , (4.25)
£ sin(Qx)

where Q = [wy, ..., w,|T. Assuming the prior distribution of feature weights w ~ N(0,3,),

the posterior distribution of Ax can be derived as in the standard Bayesian linear regression

Ax|D, % ~ N(w',02(1+ ¢ A1), (4.26)

®=p%), w=AT®AX, A =0T + 2% ",

The above formulation has been derived in SSGP regression [91].
The computational complexity becomes O(N7? + r?), which is significantly more ef-

ficient than GPR with O(N?) time complexity when r < N. The hyper-parameters are
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learned by maximizing the log-marginal likelihood of the training outputs given the inputs
using numerical methods [47]. To update the weights w incrementally given a new sample,
we do not need to store or invert A explicitly. Instead, we keep track of its upper triangular
Cholesky factor A = RTR [107]. Given a new sample, a rank-1 update is applied to the
Cholesky factor R, which requires O(r?) time. In contrast, model update in GPs requires
O(N?). For the rest of the section, we use the SE kernel and linear Bayesian regression as
in [91]. However, our proposed control framework is not tied to these choices. More pre-
cisely, the posterior can be computed by other methods, and other continuous shift-invariant
kernels can be used instead of the SE kernel.

Our goal is to generate trajectory rollouts of probability distributions by applying multi-
step SSGP inference. When propagating the predictive distributions over a time horizon
H, the input state-control pair X becomes uncertain and we need to compute p(Ax) =
[ p(Ax|x)p(x)dx. As mentioned previously, this predictive distribution cannot be com-
puted analytically. We will compute the Gaussian predictive distribution by linearizing the
posterior mean function w.r.t. the input. We skip the details in this chapter and we refer
the reader to chapter 5 for prediction under uncertain inputs in SSGPs. Here we assume
we have computed the predictive Gaussian distribution N ( kg, 25, and cross-covariance

Y, x,- Then we obtain the state space representation of the learned dynamics

M1 = Ky + g, 427

Ek—i—l = Zk + Efk + Eimfk + Efk,fck-

(4.27) is a general representation of dynamical systems. Note that pg ,3) and Xx, g
are nonlinear functions of pu;, and X,. Similar formulation can be found in GP-based
reinforcement learning methods such as [50]. Next we derive a stochastic optimal control

scheme based on this expression.
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4.3.3 A Path Integral Control Approach with Covariance Adaptation

In this section we derive an iterative stochastic optimal control algorithm based on 1) the
probabilistic representation of the dynamics in (4.27), 2) the path integral (PI) control the-

ory and 3) covariance matrix adaptation.

Augmentation of the belief dynamics

In order to incorporate uncertainty explicitly in our control framework, we introduce the
Gaussian belief v, = [u, vec(Z;)]" which is the predictive distribution over state xy,
where vec(X;,) is the vectorization of ;. Based on eq.(4.27), the belief dynamics model

can be written as

Vi+1 = Vg + ]:(Vk, uk). (428)

Where F is the belief transition function obtained from (4.27). Note that the belief dy-
namics is deterministic. Next we define an auxiliary control variable u®. The difference
between the actual control and auxiliary control Au® = u® — u is expressed by the differ-

ential equation
dAu*®

dt

= GAu". (4.29)

Based on the stability theory for linear systems, this system has a constant solution Au® =
0 € R™. This solution is asymptotically stable as ¢ — oo if the real parts of all eigenvalues
of the transition matrix G are negative. In other words, we can design the matrix G so that
Au® — 0. In this case the auxiliary control u® is approximately equivalent to the actual
control u. In other words, optimizing u® is approximately equivalent to optimizing u. In
order to perform random exploration we add Gaussian noise ¢ € R™ with e ~ AN(0,X,)

to the system (4.29), therefore we have a stochastic dynamical system represented by SDE

87

www.manaraa.com



dAu® = GAu®dt + Bde. Its discrete-time representation becomes
Auj,, = Auf + GAujAt + Bep VAL, g, ~ N(0,X,), (4.30)

where B € R™*™ is the user-designed diffusion matrix, and 3. is the exploration noise

covariance matrix. Based on (4.30) and (4.28) we obtain the augmented belief system

\% v F(vg,ug) /At
AU I O T DY
Augyy Au —Gu,
fve) 4.31)
0 0
+ UZAt + eV AL.
G B
~——
G B
We can rewrite the above augmented belief dynamics in a concise form
thi1 =ty + £(ty) At + GulAt + Be, VAL, (4.32)

where the augmented belief t = [v Au]". The actual control u can be viewed as a varying
parameter of the new system. The control and diffusion matrices G, B can be state (belief)
or time dependent. For simplicity of notation we assume they are constant for the rest of
this section. The augmented belief dynamics (4.32) is affine in the auxiliary control u® as
well as the exploration noise €. For this type of systems, we can apply the path integral

control theory [36] to obtain a sampling-based control law.
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Stochastic control law via the path integral formulation

Based on (4.32), the conditional probability of t;; given t; and uy is normally distributed.

More precisely we have
p(tre1) = N(vi + f(tp) At + GuiAt, BE.BTA?). (4.33)

Given the Bellman equation in (4.22), the Hamilton-Jacobi-Bellman (HJB) equation in
continuous-time is obtained by approximating the integral for a small A¢ and applying
Ito’s rule:
1 - -
—atvk = m}}l((jk -+ iuzTRuZ + (fk + Guk)TVXVk
U

) (4.34)
+5 Tr(BE.B "V, Vy)),

where f, = f (tr), Vi = V(ty, k) is the value function, and ¢, is the augmented state cost,

which can be defined as

qk = Ex[qk] + (AUQ)TRAUG.

Note that this cost penalizes both the expectation of the state cost and the difference be-
tween the auxiliary control and the actual control. This cost is risk-neutral, and a risk-
sensitive criterion can be incorporated by adding the cost variance term VAR, [gx]. Now
we seek the optimal auxiliary control u® for the augmented system, which is an approxi-
mation of the actual optimal control for the original system. To find the optimal control,
we take the gradient of the above expression (inside the parentheses) with respect to u and
set to 0. This yields u, = —R'GTV,V,. Inserting this expression into the HIB equation

yields the following nonlinear and second order PDE

- 1 ~ ~
—0Vi = G + (Vi Vi) £ — §(Vka)TGR‘1GTVXVk

1 - -
+3 Tr(BX.B"V, Vy).
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In order to solve the above PDE we use the exponential transformation of the value function
Vi = —Alog Uy, where ¥, = W(ty) is called the desirability of t;. Inserting the partial

derivative terms to the above equation results in

A A =N - ~

00k = Gp — — (Vi Up) T — = (Vi) "GRGV, Uy,

0y, 0, 20
\ (4.35)

203

Tr((VyP;) TBE.BTV,U,) — A Tr(Vy U, BE.BT).

+ 20,

The quadratic terms V¥, will cancel out under the assumption of \GR'GT = BX.B".
This assumption was first proposed in [34]. It is straightforward to show that this is equiv-
alent to \GR™!GT = BX_BT". This assumption can be easily satisfied in our case since

G and B are designed by the user. Given this assumption, the above PDE is simplified as
1. =7 1 - o7
OV = qu\Ifk — £, ViU — 3 Tr(Vx Ui BX.B'), (4.36)

subject to the terminal condition ¥y = exp(—4qp ). The resulting Chapman-Kolmogorov
PDE (4.36) is linear. In general, solving (4.36) analytically is intractable for nonlinear sys-
tems and cost functions. Following the path integral control theory, we apply the Feynman-
Kac formula which gives a probabilistic representation of the solution to the linear PDE

(4.36)

M=

1
U, = /p(mtk) exp (— X( G AL)) W gdry, (4.37)

Il
e

J

where 7y, is the belief trajectory from time & to H. Now we define the path cost

-

Il
=

S(milte) = qu + ) AL (4.38)

J

The optimal control can be obtained as (derivation is omitted)

uy = / P(m,|tg)ug (7 )dr, (4.39)
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where the probability of trajectory is defined as

exp(—%S(Tk\tk)
P(m|tx) = , 4.40
(7l T exp(— L8 (me[t)dr (4+40)
and the local control for each sample is
us(m) = R!GT(GR'GT) 'Bey. (4.41)

Note that the optimal control (4.39) is a weighted average of local controls which depend on
the exploration noises €. This probability-weighted averaging scheme appears in many path
integral control related algorithms, e.g., [34, 35, 36, 43, 39, 40]. Our method differs from
these methods because we incorporate predictive uncertainty into sampling and averaging,
e.g., highly uncertain samples have low probabilities. The control law is based on sampling
from uncontrolled process. This exploration scheme is inefficient for high dimensional or
highly nonlinear systems since uncontrolled trajectories usually have low probabilities (in
high cost region) [34]. In the next section we present an efficient iterative scheme with

covariance adaptation.

Iterative control with covariance adaptation

In order to improve sample efficiency, an importance sampling scheme based on controlled
process has been proposed in [34] and an iterative algorithm has been derived in [99]. The

iterative control law can be expressed as

a,new a,old
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where the control correction term and the probability of trajectory are defined as

511k = /ﬁ(7k|tk)uL(Tk)di,

eXp(—ig(THtk)
feXp(-%S(TMtk)di,

(4.43)

P(rilte) =

where

S(relt) = Srelta) + 3 ((u) TwgAL + 2(u) e, )

is the new path cost which has a coupling term between the control and noise added to the
original path cost S(7x|tx) [99]. The derivation is omitted. In the finite sample case we can

rewrite the control law as

N
u, " = UZ’Old + Z ﬁ)i(Tk|tk)uL,i(Tk>7

=1 (4.44)
exp(— 15 (rilts)

Zij\il eXP(—igi(TMtk)di ’

E(Tk’tk) =

where NV is the total number of samples. Intuitively, the local control associated with
each sample is weighted by the probability of the path. And the optimal control update
is the probability-weighted average of the local controls. The iterative scheme improves
the scalability of the batch model PI control [109]. However, the exploration noise has a
constant covariance during learning and the trade-off between exploration and exploitation
is omitted.

Now we propose a method for updating the exploration noise covariance matrix via
probability-weighted averaging. The basic idea is similar to the Covariance Matrix Adap-
tation - Evolution Strategy (CMA-ES) [110]. More precisely after each control update, we
update the covariance of the exploration noise

N

X = Z Pi(7iltr) (e — &) (ens — &), (4.45)

i=1
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where g}, 1s the mean of sampled ;. W.l.o.g. we use zero-mean €;, = 0. By implementing
this scheme, we not only update the direction of exploration via the iterative PI control
law (4.44), but also the magnitude of the exploration via covariance adaptation (4.45). The
covariance adaptation scheme has shown significant improvement in terms of convergence
speed in policy search [111]. More technical details and interpretations can be found in
[110]. However, our covariance adaptation method is different from previous related works
such as [111]. In our case the noise covariance is time-dependent, i.e., E;ﬁw depends on
the time step k. More precisely, the exploration magnitude is different and updated at each
time step along trajectories. At the next iteration, the exploration noise €, ...,y will be
sampled from the updated distribution N'(&1,X9"), ..., N'(€x, E.%). In contrast, [111]
uses the same noise covariance at each time step to generate trajectories. An algorithm for

episodic reinforcement learning (RL) is summarized in Algorithm 4. This algorithm can

be easily extended to perform model predictive control (MPC).

4.3.4 Relation to Existing Works

In the following we summarize the novel features of the proposed framework. Our method
is derived from the original PI and iterative PI control paradigm [34, 35, 36, 99]. It dif-
fers form these works in three major ways: 1) these methods require full knowledge of the
dynamics model. In contrast, our method is data-driven. 2) Our method performs sam-
pling in belief space and each sample takes into account model uncertainty. 3) Our method
uses covariance adaptation in probability-weighted averaging, which lead to significantly
improved convergence speed. In contrast [34, 35, 36, 99] keep a fixed noise covariance.
Compared with Pl-based policy search approaches [39, 40, 43], our method does not re-
quire policy parameterization or demonstration for policy initialization. In particular, the
covariance adaptation scheme has been used in [40] for policy search. Our method differs
from [40] because 1) our method is probabilistic model-based, while [40] is model-free.

The benefits of probabilistic model-based method was discussed in [55]. 2) Our control
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Algorithm 4 Path Integral Control with Covariance Adaptation under Unknown Dynamics

1: Given: The number of sample N, number of random feature r, parameters B, G and
R
2: Initialization: Collect data from the physical model (4.20) using random controls.

3: Model learning: Train GP hyperparameters. Sample random features and compute
their weights (sec.4.3.2).

4: repeat

5: for k=1:Hdo

6: repeat

7: Sample:  Generate N trajectories in the augmented belief space
tk:H,h ceey tk:H,N using
exploration noises €. 1, .., €.y sampled from N (0, 2. 1.x).
Evaluate: Compute trajectory cost for each sample S, (T|tgrr), -, S’N(T’tk:H).

9: Probability: Compute probability for each sample P, (T|tgrr), -, ]5N(7|tk: H)s
see (4.44).

10: Control update: Update control via probability-weighted averaging u;;/ " =
ul % 4 Suy.y, see (4.44).

11: Covariance adaptation: Update exploration noise covariance matrices
Se gt = Yoy P Itrn)
(€rmri — Err) (Enmi — Ererr)

12: until Convergence

13: Execution: Apply u;"“" to the original system (4.20). Move one step forward.

Incorporate new data

and update model (see section 4.3.2).
14: end for
15: until Task learned
16: return Optimal control sequence.
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policy is time-varing, in contrast to time-invariant parameters in [40]. Recently a gradient-
based PI control method based on GPs was introduced in [44]. This method is sample
efficient but requires partial model knowledge and the system has to be affine in control.
In contrast, our method has no such assumption. Furthermore, our method takes advantage
of fast probabilistic inference in SSGPs which is much more computationally efficient than
full GP inference. Another key aspect of the proposed approach is that computation for
probabilistic inference can be done in parallel (see fig. 4.3a). Real-time implementation

requires a Graphic Processing Unit (GPU).

. Target

(a) (b)

Figure 4.3: (a) Sampling of belief trajectories via probabilistic inference. The solid line
and error ellipse represent predictive mean and variance of the state, respectively. The
computation of probabilistic inference can be distributed in parallel. (b) Cart-pole swing
up task.

4.3.5 Experiments and Analysis

In this section we evaluate the performance of the proposed framework using a simulated
cart-pole swing up task, see fig. 4.3b. The cart-pole is an under-actuated systems consist
of a cart and a single pendulum (4 states and 1 control). The tasks is to swing-up the

pendulum from the initial position (point down). We consider a quadratic state cost function
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Method Optimized av- | Samples from the | Samples from the | Number of iter-
erage optimized | true model learned model ation per time
total cost step

Our method 3.57x10% 8 total 300 per iteration 20

Iterative  PI | 3.62x 10" 300 per iteration | N/A 20

[109]

Table 4.2: Comparison between our method under unknown dynamics and the iterative PI
control with known dynamics model for the cart-pole swing up task.

q(x) = (x — xtr9e) TQ(x — x?er9¢t) | and therefore

Exlg(x)] = (k= x"")TQ(p — x"") + Tr(2Q),

where x ~ N (u, X). We initialized our algorithm by 8 trajectories sampled from the true
dynamics model using random controls. In order to demonstrate the effect of covariance
adaptation, we also implemented our algorithm with constant exploration noise covariance.
We performed 5 independent experiments for both cases and the comparison is shown in
fig.4.4. Our covariance adaptation scheme significantly improves the convergence perfor-
mance. This is because exploration magnitude decreased quickly after a few iterations.
The trajectory costs by executing the optimized controls are shown in fig. 4.5. Table 4.2
compares the performance of our method and the iterative PI controller [109] with known
dynamics model. For both methods we used 300 samples and performed 20 iterations per
time step during optimization. Note that our method only uses 8 samples from the true
systems for model learning, and the 300 samples were generated from the learned SSGP
model. Our data-driven method performed well in terms of cost reduction. The iterative PI
controller generally requires more samples and iterations to achieve optimal performance.
In contrast, our method is more efficient and robust to modeling errors because 1) each
sample is generated by probabilistic inference and weighted by its predictive uncertainty,

2) covariance adaptation improves convergence speed.
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Figure 4.4: Comparison in terms of total trajectory cost reduction at each iteration during
optimization.
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Figure 4.5: Trajetory costs collected by executing optimized controls on the true dynamics
model (5 independent trials).
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4.3.6  Summary and Discussion

We have introduced a data-driven stochastic control method based on the path integral (PI)
control formulation and probabilistic inference. Similar to related PI control methods [34,
43, 39, 40, 109], we perform sampling and probability-weighted averaging to obtain opti-
mal controls. In contrast to these methods, our method does not rely on model knowledge
or policy parameterization. A key feature of our method is that sampling is performed in
the belief space and each sample takes into account model uncertainty. In addition, we
leverage covariance adaptation in order to tune the exploration magnitude automatically.
We presnted a numerical example demonstrating that 1) our method achieves good perfor-
mance in terms of cost reduction using much less samples from the true system than [109],
2) our covariance adaptation scheme improves convergence speed. Our future work will

focus on GPU implementation of our method and applications in robotics.
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CHAPTER §
PREDICTION UNDER UNCERTAINTY IN SPARSE SPECTRUM GAUSSIAN
PROCESSES

Sparse Spectrum Gaussian Processes (SSGPs) are a powerful tool for scaling Gaussian pro-
cesses (GPs) to large datasets. Existing SSGP algorithms for regression assume determin-
istic inputs, precluding their use in many real-world robotics and engineering applications
where accounting for input uncertainty is crucial. We address this problem by proposing
two analytic moment-based approaches with closed-form expressions for SSGP regression
with uncertain inputs. Our methods are more general and scalable than their standard GP
counterparts, and are naturally applicable to multi-step prediction or uncertainty propaga-
tion. We show that efficient algorithms for Bayesian filtering and stochastic model pre-
dictive control can use these methods, and we evaluate our algorithms with comparative

analyses and both real-world and simulated experiments.

5.1 Introduction

The problem of prediction under uncertainty, appears in many fields of science and engi-
neering that involve sequential prediction including state estimation [112, 113], time series
prediction [49], stochastic process approximation [114], and planning and control [50, 44].
In these problems, uncertainty can be found in both the predictive models and the model’s
inputs. Formally, we are often interested in finding the probability density of a prediction

y, given a distribution p(z) and a probabilistic model p(y|x). By marginalization,

ply) = / p(ylz)p(x) dz. (5.1
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Unfortunately, computing this integral exactly is often intractable. In this chapter, we tackle
a subfamily of (5.1) where: 1) the probabilistic model is learned from data and specified
by a sparse spectrum representation of a Gaussian process (SSGP); and 2) the input =
is normally distributed. We show that analytic expressions of the moments of p(y) can be
derived and that these are directly applicable to sequential prediction problems like filtering

and control.

Related work

Gaussian Process (GP) regression with uncertain inputs has been addressed by [48, 49],
and extended to the multivariate outputs by [69]. These methods have led to the develop-
ment of many algorithms in reinforcement learning [60, 50], Bayesian filtering [112, 70],
and smoothing [113]. However, these approaches have two major limitations: 1) they are
not directly applicable to large datasets, due to the polynomial time complexity for exact
inference [47]; and 2) analytic moment expressions, when used, are restricted to squared
exponential (SE) kernels [69] and cannot be generalized to other kernels in a straightfor-
ward way.

A common method for approximating large-scale kernel machines is through random
Fourier features [106]. The key idea is to map the input to a low-dimensional feature space
yielding fast linear methods. In the context of GP regression (GPR), this idea leads to the
sparse spectrum GPR (SSGPR) algorithm [91]. SSGP has been extended in a number of
ways for, e.g. incremental model learning [107], and large-scale GPR [115, 116]. How-
ever, to the best of our knowledge, prediction under uncertainty for SSGPs has not been
explored. Although there are several alternative approximations to exact GP inference in-
cluding approximating the posterior distribution using inducing points, e.g., [84, 117, 118],

comparing different GP approximations is not the focus of this chapter.
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Applications

We consider two key problems that are widely encountered in robotics and engineering:
Bayesian filtering and stochastic model predictive control.

The goal of Bayesian filtering is to infer a hidden system state through the recursive ap-
plication of Bayes’ rule. Well-known frameworks for Bayesian filtering include unscented
Kalman Filtering (UKF), particle filtering (PF), extended Kalman filtering (EKF), and as-
sumed density filtering (ADF). GP-based Bayesian filtering with SE kernels has been de-
veloped for these frameworks by [112, 70]. We extend this work with highly efficient
SSGP-based EKF and ADF algorithms.

The goal of stochastic model predictive control (MPC) is to find finite horizon optimal
control at each time instant. Due to the high computational cost of GP inference and real-
time optimization requirements in MPC, most GP-based control methods [50, 85, 119] are
restricted to episodic reinforcement learning tasks. To cope with this challenge, we present
an SSGP-based MPC algorithm that is fast enough to perform probabilistic trajectory opti-

mization and model adaptation on-the-fly.

Our contributions

e We propose two approaches to prediction under uncertainty in SSGPs with closed-
form expressions for the predictive distribution. Compared to previous GP counter-
parts, our methods: 1) are more scalable, and 2) can be generalized to any continuous

shift-invariant kernels with a Fourier feature representation.

e We demonstrate successful applications of the proposed approaches by presenting
scalable algorithms for 1) recursive Bayesian filtering and 2) stochastic model pre-

dictive control via probabilistic trajectory optimization.
The rest of the chapter is organized as follows. In §5.2, we give an introduction to

SSGPs, which serves as our probabilistic model. Derivation and expressions of the two
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proposed prediction methods are detailed in §5.3. Applications to filtering and control, and
experimental results are presented in §5.4 and §5.5 respectively. Finally §5.7 concludes the

chapter.

5.2 Sparse Spectral Representation of GPs

Consider the task of learning the function f : RY — R, given IID data D = {x;, y; }1*,,

with each pair related by

y=f(z)+e e~N(0,02), (5.2)

where € 1s IID additive Gaussian noise. Gaussian process regression (GPR) is a principled
way of performing Bayesian inference in function space, assuming that function f has
a prior distribution f ~ GP(m, k), with mean function m : RY — R and kernel k :
R?xR? — R. Without loss of generality, we assume m(z) = 0. Exact GPR is challenging
for large datasets due to its O(n?) time and O(n?) space complexity [47], which is a direct
consequence of having to store and invert an n X n Gram matrix.

Random features can be used to form an unbiased approximation of continuous shift-
invariant kernel functions, and are proposed as a general mechanism to accelerate large-
scale kernel machines [106], via explicitly mapping inputs to low-dimensional feature
space. Based on Bochner’s theorem, the Fourier transform of a continuous shift-invariant
positive definite kernel k(x, z’) is a proper probability distribution p(w), assuming k(z, x’)

is properly scaled [106]:

k(z,2') = / p(w)e’ =) du
= E(¢o(2)du(z)), w~ p(w),

(5.3)

where ¢,,(x) = €/’ *, and we can see that k(z, 2’) only depends on the lag vector separat-

ing z and 2’: © — 2’. Equation (5.3) leads to an unbiased finite sample approximation of
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ki k(z,2') = =3 ¢, (%) ¢, (2')*, where random frequencies {w; }I, are drawn IID from
p(w). Utilizing the fact that ¢,, can be replaced by sinusoidal functions since both p(w)
and k(x,z’) are reals, and concatenating features {¢,, }, into a succinct vector form, an

approximation for k(x, 2’) is expressed as

k(z,2") ~ ¢(z)T é(x ¥ (5.4)
¢S

T

¢(x) = oy, cos(w! ), 2(z) = oy sin(w]
¢ i i

i z Wz'\’p

where o0}, is a scaling coefficient. For the commonly used Squared Exponential (SE) ker-
nel: k(z,2') = ofexp(—4llz — 2/[3-1), p(w) = N(0,A™") and o = &, where the
coefficient o, and the diagonal matrix A are the hyperparameters, examples of kernels and
corresponding spectral densities can be found in Table 5.1.

In accordance with this feature map (5.4), Sparse Spectrum GPs are defined as follows

Definition 2. Sparse Spectrum GPs (SSGPs) are GPs with kernels defined on the finite-

dimensional and randomized feature map ¢ (5.4):
k(z,2") = ¢(x) p(2)) + 026 (x — '), (5.5)

where the function ¢ is the Kronecker delta function.

The second term in (5.5) accounts for the additive zero mean Gaussian noise in (5.2),
if the goal is to learn the correlation between = and y directly as in our case of learning the
probabilistic model p(y|z), instead of learning the latent function f.

Because of the explicit finite-dimensional feature map (5.4), each SSGP is equivalent
to a Gaussian distribution over the weights of features w € R?™. Assuming that prior

distribution of weights w is N'(0, ) ! and the feature map is fixed, after conditioning on

! L isstheidentitymatrix with proper size. The prior covariance is identity since E (f(z)f(z)) =
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the data D = {x;, y; }™,, the posterior distribution of w is 2

w~ N(a, 02A7Y), (5.6)

a=A"1teY, A=0dT +021,

which can be derived through Bayesian linear regression. In (2 .6), the column vector Y and
the matrix ® are specified by the data D: Y = [yl o yn} , D= [gb(asl) o O |-
Consequently, the posterior distribution over the output y in (5.2) at a test point x is ex-
actly Gaussian, in which the posterior variance explicitly captures the model uncertainty in

prediction with input x:

p(ylz) = N(a"¢(x), o2 + apl|¢(@)[|5-1)- (5.7)

This Bayesian linear regression method for SSGP is proposed in [91]. Its time complexity
is O(nm? + m3), which is significantly more efficient than standard GPR’s O(n?) when

m <K n.

Remark It’s worth noting that the methods proposed in this chapter are not tied to specific
algorithms for SSGP regression such as Bayesian linear regression [91], but able to account
for any SSGP with specified feature weights distribution (5.6), where posterior o and A can
be computed by any means. Variations on A include sparse approximations by a low rank
plus diagonal matrix, or iterative solutions by optimization methods like doubly stochastic

gradient descent [115].

E (¢(z)TwwT¢(z")) = ¢(z)T E(wwT)¢(z'), and E (f(z) f(z')) = ¢(z)T ¢(2’) (see §2.2 in [60] for de-
tails.)
2Conditioning on data D is omitted, e.g., in w|D, for simplicity in notation.
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5.3 Prediction under Uncertainty

Two methods for prediction under uncertainty are presented under two conditions: 1) the
uncertain input is normally distributed: = ~ A (i, ), and 2) probabilistic models are in
the form of (5.7) specified by SSGPs. Despite these conditions, evaluating the integral
in (5.1) is still intractable. In this work, we approximate the true predictive distribution
p(y) by a Gaussian distribution with moments that are analytically computed through: 1)
exact moment matching, and 2) linearization of posterior mean function. Closed-form ex-
pressions for predictive mean, variance, covariance, and input-prediction cross-covariance
are derived. We consider multivariate outputs by utilizing conditionally independent scalar
models for each output dimension, i.e., assuming for outputs in different dimension vy, and
Ybs P(Ya, Yo|) = p(ya|x)p(yp|x). For notational simplicity, we suppress the dependency of

¢(x) on z, and treat y as a scalar by default.

5.3.1 Exact moment matching (SSGP-EMM)

We derive the closed-form expressions for exact moments: 1) the predictive mean Ky, 2)
the predictive variance VARy and covariance COV (y,, y), which in the multivariate case
correspond to the diagonal and off-diagonal entries of the predictive covariance matrix, and
3) the cross-covariance between input and prediction COV(z, y).
Using the expressions for SSGP (5.4), (5.7), and the law of total expectation, the pre-
dictive mean becomes
Ey=EE(ylz) =E (a"¢) =a”"E v : (5.8)
°

E ¢¢ = o) Ecos(w/ z), E¢} = o;Esin(w; z),

7

where i = 1,...,m, and in the nested expectation E E(y|z), the outer expectation is over

the input distribution p(xz) = N (u, ), and the inner expectation is over the conditional
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distribution p(y|x) (5.7).
By observing (5.8), we see that the expectation of sinusoids under the Gaussian distribu-

tion is the key to computing the predictive mean. Thus, we state the following proposition:

Proposition 1. The expectation of sinusoids over multivariate Gaussian distributions: x ~
N, %), z € RY ie, pa) = (27)"2(det X) 2 exp(—3lz — pl|3-1), can be computed

analytically:

T

1
E cos(w"x) = exp(—3 [w]3) cos(w 1),

: 1 :
Esin(w’z) = exp(—§||w||§) sin(w’ ).

To prove it, we invoke Euler’s formula to transform the left-hand-side to complex do-
main, apply identities involving quadratic exponentials, and then convert back to real num-
bers. In Proposition 1, the expectations depend on the mean and variance of the input
Gaussian distribution. Intuitively, after passing a Gaussian distributed input through a si-
nusoidal function, the expectation of the output is equal to passing the mean of the input
through the sinusoid, and then scaling it by a constant exp(—3 |lw||%), which depends on
the variance of the input. Expectations are smaller with larger input variance due to the
periodicity of sinusoids.

The exact moments are then derived using Proposition 1. By the law of total variance,

the predictive variance is

VARy = EVAR(y|z) + VARE(y|z)
(5.9)

=0, 4 0. Tr (A7) + o' Va — (Ey)?,

where W is defined as the expectation of the outer product of feature vectors over input dis-

tribution p(x). Specifically, we compute ¥ by applying the product-to-sum trigonometric

106

www.manaraa.com



identities:

o) gee pes |
gse s
Ui = %ﬁ (E (cos(wi +wj)"x) + E (cos(w; — wj)"x))
0 = % 5 et )75) Bl )73
Vi = %ﬁ (E (sin(w; +w;)"z) —E (sin(w; —w;)" 7)),
where U, U*, U are m x m matrices, and i, j = 1, ..., m, on whose terms Proposition

1 can be directly applied.

Next, we derive the covariance for different output dimensions for multivariate predic-
tion. These correspond to the off-diagonal entries of the predictive covariance matrix. We
show that, despite the conditional independence assumption for different outputs given a
deterministic input, outputs become coupled with uncertain inputs. Using the law of total

covariance, the covariance is

COV(ya, yo) = COV (E(ya|z), E(ys|x))
= E (E(ya|z), E(gs]2)) — (Eya) (Ey,) (5.10)

= azq]abab - (CVZ E ¢a> (OébT E ¢b)7

where matrix W, is the expectation of the outer product of feature vectors corresponding
to different feature maps ¢,, ¢, for outputs y,, y,, computed similarly as in (5.3.1) with
corresponding random frequencies {w; }, and the scaling coefficient oy, (5.4). Vectors a,
and q, are the corresponding weight vectors for ¥, and y; (5.7). Compared to the expression
for the variance of a single output in (5.9), the term E (COV(y,|z)COV (y|z)) that is
included in the law of total covariance is neglected due to the assumption of conditional
independence of different outputs (§5.2), so (5.10) does not have the corresponding first

two-terms.-in-(5.9).
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Finally, we compute the cross-covariance between input and each output dimension.

Invoking the law of total covariance:

COV(z,y) = COV(x,E(y|z))
= E(zE(ylz)) — (Ex)(Ey) (5.11)

=Ta— (Ey)p,

where matrix T is the expectation of the outer product of the input = and the feature vector

¢(z) over input distribution z ~ N (1, X3):

E(z¢") =T =|1e ... 1o T8 ... 15|,

T§ =04 E (cos(w/z)z), T;=04E (cos(w]z)z),

(2 K3

where ¢ = 1,...,m. We state the following proposition to compute each column in T

consisting of expectations of the product sinusoidal functions and inputs.

Proposition 2. The expectation of the multiplication of sinusoids and linear functions over

multivariate Gaussian distributions: x© ~ N (u,Y), can be computed analytically:

E (cos(w’z)z) = (Ecos(w'z)) p — (E(sin(w’z))Sw,

E (sin(w’z)z) = (Esin(w’z)) p + (Ecos(w’z)) Sw,

where the right-hand-side expectations have analytical expressions (Proposition 1).

To prove it, we find an expression for [ (aTaU cos(wa)), for any a, through the complex
domain trick used to prove Proposition 1. Next, the result is extended to E (x cos(wa)) ,
by setting a to consist of indicator vectors. Applying Proposition 1 and 2, we complete the

derivation of COV(z, y) in (5.11).

108

www.manaraa.com



Kernel k(z,x") p(w)
Gaussian | exp(—zi|lz — 2'[3 ) N0, A1)
. a
Laplacian | exp(—llo—o/[) | Ty
Matérn T K (r) W% +4r?|lwl3) 2

Table 5.1: Examples of continuous shift-invariant positive-definite kernels and their corre-
sponding spectral densities, where r = w
b 278 T (v+4)(20)"

T(v)e2v :

, K, is a modified Bessel function, and

Remark Insummary, SSGP-EMM computes the exact posterior moments. This is equiv-
alent to expectation propagation [120] by minimizing the Kullback-Leibler divergence be-
tween the true distribution and its Gaussian approximation with respect to the natural pa-
rameters. SSGP-EMM'’s computation complexity is O (m?k?d?), where m is the number
of features, k is the output dimension, and d is the input dimension. The most computation-
ally demanding part is constructing matrices ¥, (5.10) for each output pair, where each
requires O (m?d?).

Compared to the multivariate moment-matching approach for GPs (GP-EMM) [49, 69]
with O (n?k*d?) time complexity, SSGP-EMM is more efficient when m < n. Moreover,
our approach is applicable to any positive-definite continuous shift-invariant kernel with
different spectral densities (see examples in Table 5.1), while previous approaches like
GP-EMM [69] are only derived for squared exponential (SE) or polynomial kernels. Next
we introduce a more computationally efficient but less accurate approach that avoids the

computation of W,;’s.

5.3.2 Linearization (SSGP-Lin)

An alternative approach to computing the exact moments of the predictive distribution is

based on the linearization of the posterior mean function in (5.7) at the input mean :

m(x) = o ¢(x) = m(p) + o' Do(p)(x — p), (5.12)
M
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where D¢(p) denotes taking the derivative of function ¢ at ;. Given the definition of

¢ in (5.4), D¢ can be found by chain rule: D¢S(z) = —opsin(w! z)w], D¢i(z) =

(2

T

o cos(w! z)w!

,L' .
Utilizing the linearized posterior mean function (5.12), the predictive moments can be

approximated. The predictive mean approximation is
Ey =EE(ylz) = m(p), (5.13)

and the predictive variance approximation is

VARy = EVAR(y|z) + VAR E(y|z)
~ VAR(y|p) + VAR(a” Mz) (5.14)

= oy + oullo(wi + o' MEM o

and the approximate covariance between output dimension a and b is

COV(ya, ys) = COV (E(ya|x), E(ys|2))
=E (o) Mo(z — p)(z — p)" M o) (5.15)

~ al M, M] oy,

where M, and M, are defined as M in (5.12), except that they correspond to feature maps
¢, and ¢,. Notice that the assumption of conditional independence between different out-
puts is invoked here again, cf., (5.10).

Finally, the cross-covariance between the input and output can be approximated as

COV(z,y) = COV(z,E(y|x))
~E ((z — p)(@"M(z — p))) (5.16)

=o' MY
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Method SSGP-EMM SSGP-Lin GP-EMM
Time O(m22d%) | O(m%k + mk*d) | O(n®k*d?)
Apphcable continuous shift- continuous shift- SE or polynomial ker-
kernels invariant kernels invariant kernels nels

Table 5.2: Comparison of our proposed methods and GP-EMM [49, 69] in terms of com-
putational complexity and generalizability.

Unlike SSGP-EMM, which computes exact moments (§5.3.1), this linearization-based ap-
proach SSGP-Lin computes an approximation of the predictive moments. In contrast to
SSGP-EMM’s O(m?k*d) computational complexity, the computation time of SSGP-Lin
is reduced to O(kad), as a direct consequence of avoiding the construction of ¥ (5.3.1)
in SSGP-EMM (5.10), which makes SSGP-Lin more efficient than SSGP-EMM, especially
when the output dimension is high.

Both SSGP-EMM and SSGP-Lin are applicable to a general family of kernels. See

Table 5.2 for a comparison between our methods and GP-EMM [49, 69]. In the next

section, we compare these approaches in applications of filtering and control.

5.4 Applications

We focus on the application of the proposed methods to Bayesian filtering and predictive
control. We begin by introducing Gauss-Markov models, which can be expressed by the

following discrete-time nonlinear dynamical system:

Topr = f(2g, ) + €, e ~N(0,5), (5.17)

Ye = g(xe) + €, e/ ~ N(0,20), (5.18)

where 7, € R is state, u; € R" is control, y;, € R” is observation or measurement,
€ € R% is IID process noise, €; € R is IID measurement noise, and subscript ¢ denotes

discrete time index. We call the probabilistic models (5.17) and (5.18) the dynamics and
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observation models, and the corresponding deterministic functions f and g the dynamics
and observation functions.
We consider scenarios where f and g are unknown but a dataset D = ({ (24, u), 21 Y12t oy, yt},?:l)
is provided. The probabilistic models specified by SSGPs can be learned from the dataset,
and then used to model the dynamics and observation (5.17) (5.18). More concretely, the
dynamics model p(x,41|z;, u;) is learned using state transition pairs {(zy, uy), Top1 Y1,

and the observation model p(y;|z;) is learned separately from state-observation pairs {x;, y; - ;.

5.4.1 Bayesian filtering

The task of Bayesian filtering is to infer the posterior distribution of the current state of
a dynamical system based on the current and past noisy observations, i.e., finding p(zy.),
where the notation x|, denotes the random variable x; Yo, - - - , ys. Due to the Markov prop-
erty of the process x, i.e., T¢|To, . .., Zi—1 = %21, in Gauss-Markov models, p(z;) can

be computed recursively through alternating prediction step and correction step.

Prediction step (Ty_1ji—1 — T¢j¢—1)

In the prediction step, ;_1,— is propagated through the dynamics model p(z¢|z¢—1, us—1):

P(l’t\t—1) = /p(xt’$tlaut1)p(xt—1|t—1)dxtla

which can be viewed as prediction under uncertainty (5.1). Suppose that p(z,_1;—1) =
N (,&t,”t,l, f]t,”t,l), with learned SSGP representation for the dynamics, Gaussian ap-
proximations of the output: p(xﬂt_l) ~N (ﬂt|t—1, 2t‘t_1) can be obtained by either SSGP-
EMM (§5.3.1) using (5.8), (5.9) and (5.10), or SSGP-Lin (§5.3.2) using (5.13), (5.14) and
(5.15).
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Correction step (-1 — Tyj¢)

The correction step conditions z;;_; on the current observation y; using Bayes’ rule:

p(yt |$t|t—1)p(17t|t—1)
= . 5.19
p(xﬂt) fp(yt|$t|t—1>p<$t\t—1) dxy ( )

In the preceding prediction step, we obtain p(xﬂt_l) ~ N (ﬂt|t_1, f]t_ut_l), which serves
as a prior on z; in this correction step. Due to the intractability of the integral in the denom-
inator, to apply Bayes’ rule we first seek Gaussian approximations for the joint distribution,

as in the previous work on Bayesian filtering relying on GPs [70, 112]:

Ttjt—1

~N , . , (5.20)
Yt|t—1 ﬂy Zgy Ey

Invoking p(ye—1) = [ p(ye|@ee—1)p(zee—1) day, the moments fi,, f]y, and f]my in the
joint Gaussian approximation can be computed as the predictive mean, predictive covari-
ance, and input-prediction cross-covariance, for the observation model p(y;|x;) with input
p(xt|t_1), using SSGP-EMM or SSGP-Lin. Having all terms in (5.20) determined, we con-

dition w,;_; exactly on current observation y;:

e = flje—1 + 2:{:;/2;1(9 — fly),
(5.21)

~ ~ 5 A
Et|t = Z75|t—1 - Z.Z’yzy Eacy'

This Gaussian approximation p(z:) ~ N (f, i]t‘t) is then used as input to the prediction
step. Thus, we have shown that starting from p(z) = N (u0, X0), by consecutively apply-
ing prediction and correction steps presented above, we recursively obtain state estimates
for zy;—; and x,,. Rather than using a finite sample-based approximation such as in the
GP-UKF [112], the Gaussian approximations of the full densities p(x;) and p(z;—1) are

propagated.
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Algorithm 5 SSGP-ADF and SSGP-EKF
1: Model learning: collect dataset D, and learn SSGP dynamics and observations models

(§5.2.)

2: Initialization: set prior p(x).

3 fort=1,...do

4: Prediction: compute ji;;—; and flﬂt_l . by either SSGP-EMM (§5.3.1) or SSGP-Lin
(8§5.3.2).

5: Measurement: make an observation ;.

6: Correction: compute fi;; and EAJW according to (5.21) by either SSGP-EMM
(§5.3.1) or SSGP-Lin (§5.3.2).

7: end for

We summarize the resulting filtering algorithm SSGP-ADF (assumed density filtering)
and SSGP-EKF (extended Kalman filtering), based on SSGP-EMM and SSGP-Lin, respec-
tively, in Algorithm 5. These are analogs of GP-ADF [70] and GP-EKF [112].

5.4.2 Stochastic Model Predictive Control

The stochastic model predictive control (MPC) problem is to choose a control sequence
that minimizes the expected cost, provided p(z;):

i+T
Ufyyppp = argmin B (h(xt+T> + Z Wz, Ut+i)),

Ut41:t4+T i

at each time step, subject to stochastic system dynamics (5.17), where function h : R¢ —
R and [ : R? x R"” — R are the final and running cost respectively.

There are two main challenges to applying MPC in practice: 1) MPC requires an ac-
curate dynamics model for multi-step prediction, and 2) online optimization is very com-
putationally expensive. For clarity in presentation, we will assume that the state is fully

observable henceforth.
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Algorithm 6 MPC via probabilistic trajectory optimization (1-3: offline optimization, 4-8:
online optimization)

1: Model learning: collect dataset D, and learn SSGP dynamics model (§5.2).

2: Initialization: set ¢t = 0, and estimate p(x).

3: Trajectory optimization: perform trajectory optimization in belief space, obtain

Uy
4: repeat
5: Policy execution: apply one-step control uy, ; to the system and move one step

forward, update t =t + 1.

6: Model adaptation: incorporate new data and update SSGP dynamics model.

7: Trajectory optimization: perform re-optimization with the updated model. Initial-
ize with the previously optimized trajectory and obtain new uy, ., 7.

8: until Task terminated

MPC via probabilistic trajectory optimization

We address the aforementioned challenges by employing a combination of prediction under
uncertainty and trajectory optimization. More precisely, we use SSGP-EMM or SSGP-Lin
to efficiently obtain approximate Gaussian distribution over trajectory of states and perform
trajectory optimization in the resultant Gaussian belief space based on differential dynamic
programming (DDP) [58, 29]. Note that DDP-related methods require computation of first
and second order derivatives of the dynamics and cost. Our analytic moment expressions
provide a robust and efficient way to compute these derivatives.

Within the SSGP framework, we may incrementally update the posterior distribution
over the feature weights w (5.6) given a new sample without storing or inverting the matrix
A explicitly, Instead we keep track of its upper triangular Cholesky factor A = RT R [107].
Given a new sample, a rank-1 update is applied to the Cholesky factor R, which requires
O(m?) time. To cope with time-varying systems and to make the method more adaptive,

we employ a forgetting factor A\ € (0, 1), such that the impact of the previous samples
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decays exponentially in time [121].

Our proposed MPC algorithm, summarized in Algorithm 6, is related to several algo-
rithms and differs in both model and controller learning. First, SSGPs are more robust to
modeling error than Locally Weighted Projection Regression (LWPR) used in iLQG-LD
[59]. See a numerical comparison in [107]. Second, we efficiently propagate uncertainty in
multi-step prediction which is crucial in MPC. In contrast, AGP-iLQR [68] drops the input
uncertainty and uses subset of regressors (SoOR-GP) which lacks a principled way to select
reference points. In addition, PDDP [85] uses GPs which are computationally expensive
for online optimization. Two deep neural networks are used for modeling in [122], which

make it difficult to perform online incremental learning, as we do here.
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Figure 5.1: Black points are ground truth states, red areas are filter distributions for (a) GP-
ADF [70], (c) GP-EKF [112], our proposed methods (b) SSGP-ADF and (d) SSGP-EKF.
The x-axis is the mean of initial belief p(z), which is randomly distributed in [—10, 10]
and y-axis shows the mean and twice the standard deviation of filtered distribution p(z1|y;)
after observing ;.
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Figure 5.2: Recursive filtering task for high-speed autonomous driving. Figure (b) shows
trajectories of all the states of a 30 seconds continuous driving (1,200 steps), where blue
lines are the ground truth, and red lines and red areas are the mean and twice the standard
deviation of the filtered distributions respectively. In (c), the red line and area are the mean
and twice the standard deviation of N L, over six 30 seconds driving with varying number
of features.

5.5 Experimentals and Analysis

5.5.1 Bayesian filtering

1D One-step filtering

25x
1422

and observation g(x) = 6sin(2r) with ¥ = 1.5% and ¥y = 1 in (5.17,5.18), in a sim-

We consider a synthetic dynamical system with ground-truth dynamics f(x) = %x +

ilar setting to [70]. We compare the performance of four filters, SSGP-ADF, SSGP-EKF,
GP-ADF [70] and GP-EKF [112]. All models are trained using 800 samples. However,

for SSGP models, only 10 random Fourier features of a SE kernel are used. Figure 5.1
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Method | SSGP-ADF | SSGP-EKF | GP-ADF | GP-EKF
NL, 2.5003 3.415467 | 2.489385 | 3.396343
RMSE 4.6822 5.1451 4.6854 5.1012

Table 5.3: Comparison of our methods with GP-ADF [70] and GP-EKF [112] in terms
of average N L, (negative log-likelihood) of the ground truth states given estimates and
RMSE (root-mean-square error). Lower values are better. The results correspond to the
filtering task in sec 5.5.1.

illustrates the comparison of filtered state distribution of a typical realization. We evaluate
the methods by computing N L, (the negative log-likelihood of the ground truth samples
in the filtered distribution) and RMSE (root-mean-square error between filtered mean and
ground truth samples). See Table 5.3 for a detailed comparison. Our methods SSGP-ADF
and SSGP-EKEF are able to offer close performance with their full GP counterparts but with
greatly reduced computational cost. See the discussion section for further discussions on

the comparison between SSGP-ADF and SSGP-EKF.

Recursive filtering

We next consider a state estimation task in high-speed autonomous driving on a dirt track
(Figure 5.2a). The goal is to recursively estimate the state of an autonomous rallycar given
noisy measurements. The vehicle state consists of linear velocities (x and y), heading
rate, and roll angle, in body frame. Controls are steering and throttle. Measurements are
collected by wheel speed sensors. This filtering task is challenging because of the complex
nonlinear dynamics and the amount of noise in the measurements. We do not use any prior
model of the car, but learn the model from ground truth estimates of vehicle state generated
by integrating GPS and IMU data via iSAM2 [123]. 50,000 samples are collected from
wheel speed sensors and ground truth state estimates from iISAM2 for training. Because
of the sample size, it is too computationally expensive to use GP-based filter such as GP-
ADF [70]. Instead, we use SSGP-ADF to perform 1,200 recursive filtering steps which
correspond to 30 seconds of high-speed driving. Filtered distributions using 80 features are

shown.in Figure 5.2b, and Figure 5.2c shows the mean and twice the standard deviation
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of NL, over six 30 seconds driving with different number of features. Surprisingly, only

need a small number of features is necessary for satisfactory results.

5.5.2 Model Predictive Control

Tracking a moving target

We consider the Puma-560 robotic arm and quadrotor systems with dynamics model spec-
ified by SSGPs. For both tasks the goal is to track a moving target. In addition, the true
system dynamics vary online, which necessitates both online optimization and model up-

date, as we do here. The tasks are described as follow:

PUMA-560 task: moving target and model parameter changes

The task is to steer the end-effector to the desired position and orientation. The desired
state is time-varying over 800 time steps as shown in fig.5.3a. We collected 1000 data
points offline and sampled 50 random features for both of our methods. Similarly for AGP-
iLQR we used 50 reference points. In order to show the effect of online adaptation, we
increased the mass of the end-effector by 500% at the beginning of online learning (it is

fixed during learning).

Quadrotor task: time-varying tasks and dynamics

The objective is to start at (-1, 1, 0.5) and track a moving target as shown in fig.5.3b for 400
steps. The mass of the quadrotor is decreasing at a rate of 0.02 kg/step. The controls are
thrust forces of the 4 rotors and we consider the control constraint uy,;, = 0.5, Unax = 3.
We collected 3000 data points offline, and sampled 100 and 400 features for online learning.
The forgetting factor for online learning A = 0.992. SSGP-Lin was used for approximate
inference. The receding-horizon DDP (RH-DDP) [29] with full knowledge of the dynamics

model was used as a baseline.
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Figure 5.3: PUMA-560 and quadrotor tasks

Results in terms of cost [(xy, u;) are shown in Figure 5.5. Figure 5.5a shows that our
methods outperform iLQG-LD [59] and AGP-iLQR [68]. The similarities and differences
between these methods have been discussed in §5.4.2. Figure 5.5b shows that model update

is necessary and more features could improve performance.
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Autonomous drifting

We study the control of an autonomous car during extreme operating conditions (power-
slide). The task is to stabilize the vehicle to a specified steady-state using purely longitu-
dinal control during high-speed cornering. This problem has been studied in [124] where
the authors developed a LQR control scheme based on a physics-based dynamics model.
We apply our MPC algorithm to this task without any prior model knowledge and 2,500
data points generated by the model in [124]. SSGP-Lin is used for multi-step prediction.

Results and comparison to [124] are illustrated in Figure 5.4.
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Figure 5.4: Comparison of the drifting performance using 50 (left), 150 (middle) and 400
(right) random features. Blue lines are the solution provided in [124]. Performance im-
proves with a larger number of features, and with a moderate number of features, MPC
with SSGP-Lin behaves very closely to the ground truth solution.

5.5.3 Additional experiments on approximate inference

We compare the proposed approximate inference methods with three existing approaches:
the full GP exact moment matching (GP-EMM) approach [48, 49, 69], Subset of Regres-
sors GP (SoR-GP) [47] used in AGP-iLQR [68], and LWPR [125] used in iLQG-LD [59].

Note that SOR-GP and LWPR do not take into account input uncertainty when performing
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Figure 5.5: Cost comparison for arm and quadrotor tasks.

regressions. We consider two multi-step prediction tasks using the dynamics models of a
quadrotor (16 state dimensions, 4 control dimensions) and a Puma-560 manipulator (12

state dimensions, 6 control dimensions).

Accuracy of multi-step prediction

In the following, we evaluate the performance in terms of prediction accuracy. We collected
training sets of 1000 and 2000 data points for the quadrotor and puma task, respectively.
We used 100 and 50 random features for our methods. We used 100 and 50 reference
points for SOR-GP. Based on the learned models, we used a set of 10 initial states and
control sequences to perform rollouts (200 steps for quadrotor and 100 steps for Puma)
and compute the cost expectations at each step. Fig.5.6(a)(b) shows the cost prediction
errors, i.e.(L(xy) — E L(xy))?. It can be seen that SSGP-EMM is very close to GP-EMM
and SSGP-EMM performs slightly better than SSGP-Lin in all cases. Since SoR-GP and
LWPR do not take into account input uncertainty when performing regression, our methods

outperform them consistently.
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Figure 5.6: (a)-(b): Approximate inference accuracy test. The vertical axis is the squared
error of cost predictions for (a) quadrotor system and (b) Puma 560 system. Error bars
represent standard deviations over 10 independent rollouts. (c)-(d): Comparison of com-
putation time on a log scale between (c) SSGP-Lin and GP-EMM; (d) SSGP-EMM and
GP-EMM. The horizontal axis is the input and output dimension (equal in this case). Ver-
tical axis is the CPU time in seconds.

Computational efficiency

In terms of the computational demand, we tested the CPU time for one-step prediction us-
ing SSGP-EMM and SSGP-Lin and full GP-EMM. We used sets of 800 random data points
of 1,10,20,30,40,50,60,70,80,90 and 100 dimensions to learn SSGP and GP models. The
results are shown in fig.5.6¢,5.6d. Both SSGP-EMM and SSGP-Lin show significantly less

computational demand than GP-EMM with similar prediction performance (fig.5.6¢,5.6d).
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Our methods are more scalable than GP-EMM, which is the major computational bottle-

neck for probabilistic model-based RL approaches [50, 85].

5.6 Discussion

5.6.1 Conditional independence between outputs

To deal with multivariate outputs, the assumption of conditional independence between
any two output dimensions is imposed, which implies that 1) the noise for different out-
puts are independent, e.g., Gaussian noise with diagonal covariance matrix, and 2) there’s
no cross-dependence between channels in the prior, e.g., a vector-valued Gaussian process
(GP) prior with a matrix-valued kernel function that only has nonzero entries on the di-
agonal. These two conditions may be violated in practice. On one hand, the noise may
not be independent in general, e.g., wind blowing in some direction causes coupled noise
on acceleration for aircraft. On the other hand, one may wish to exploit useful structure
between different channels by incorporating them in the prior, e.g., dependence of velocity
and acceleration 